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METHOD OF SUCCESSIVE APPROXIMATIONS FOR THE INTEGRATION OF 
EQUATIONS OF A LAMINAR MULTI-COMPONENT BOUNDARY LAYER 

WITH CHEMICAL REACTIONS INCLUDING IONIZATION 

G. A. Tsirskiy 

ABSTRACT. The two-dimensional stationary boundary 
layer equations of an asymtotically thin boundary layer 
are solved using the method of successive approximation. 
A multi-component.gas with chemical reactions and ioni- 
zation is considered. The method was tested and found 
to be accurate to 1%. 

ANNOTAT ION 

This work represents further development and application of the method 
of successive approximations [l] to the integration of two-dimensional sta- 
tionary equations of an asymptotically thin laminar boundary layer in a pre- 
cise formulation for the general case of the motion of a multi-component 
chemically reacting gas, including ionization. 

One of the advantages of this method of successive approximations lies 
particularly in the fact that the first approximations may be computed even 
for complex problems of a hypersonic boundary layer in analytical form, and 
will yield a good approximate solution, whose accuracy may be computed using 
this method by computing the successive approximations on an electronic com- 
puter. 

The convergence of this method was experimentally proven on simple prob- 

* Numbers in the margin indicate the pagination in the original foreign text, 



lems of boundary layer theory by computing a large number of iterations (up to 
ZO), which showed that with a reasonable assignment of the zero approximation 
the third to fourth approximations will yield a solution that differs no more 
than 1% from the exact one, 

The numerical results of the systematic computations according to this 
method will be cited in a subsequent paper. 

We have simultaneously given a strict rational formulation of the problem 
on a chemically balanced boundary layer on an impermeable and thermochemically 
disintegrated* wall, when the diffusion and thermodiffusion properties of the 
components are different. 

The basic equations for a partially ionized boundary layer without ex- 
ternal electromagnetic fields with reactions are reduced to a type which agree 
In form with the equations for a chemically reacting mixture of neutral gases. 

I 

*Translator's note: 
context of re-entry physics being discussed. 
howevero and the translation follows his nomenclature and uses the word dis- 
integration, instead of ablation. 

The term ablation is obviously designated' here within the 
The author uses a different term, 

2 



INTRODUCTION 

Different  methods are used a t  t h e  present  t i m e  as the  basic methods f o r  /3 
obtaining "precise" so lu t ions  t o  t h e  boundary l aye r  equations. 

i n t e g r a l  r e l a t ionsh ips  proposed by A. A. Dorodnitsin [2] has a l s o  received 

wide-spread d i s t r i b u t i o n  i n  the  pas t  few years. 

The method of 

The use i t s e l f  and the  appl ica t ion  of one of these  methods t o  complex 

physico-chemical boundary l aye r s  i n  t h e  presence of a l a r g e  number of compon- 

en t s ,  such as d i f fus ion ,  unbalanced homogeneous and heterogeneous chemical 

reac t ions  and ion iza t ion  reac t ions  i s  always an independent and r a t h e r  d i f f i -  

c u l t  problem which can of ten  not be solved even on modern e l ec t ron ic  computers. 

Thus, on the  one hand, t he  exis tence of complicated mathematical problems 

i n  boundary layer  theory, and on t h e  o ther  hand,the r a t h e r  complex methods f o r  

obtaining t h e i r  p rec ise  so lu t ions  leads  t o  the  f a c t  t h a t  i n  the operat ion of 

i n s t i t u t e s  of design and departments of design serial computations of boundary 

l a y e r s  are ca r r i ed  out  with co r re l a t ion  formulas, obtained e i t h e r  on the  b a s i s  

of numerical computations of problems i n  a s impl i f ied  physical formulation 

o r  on the  bas i s  of approximate methods based pr imari ly  on t h e  i n t e g r a l  method 

of Karman-Pohlhausen. 

, 

Signi f icant  advances i n  the  c rea t ion  of approximate methods i n  boundary 

l aye r  theory were a t t a ined  i n  recent  years  i n  connection with the  appearance 

of t he  parameteric method of in t eg ra t ing  universa l  equations of t h e  laminar 

boundary l aye r  proposed by L. G. Loytsyanskiy [3] ,  

With respec t  t o  t h e  above i n  boundary l aye r  theory, espec ia l ly  the  hyper- 

sonic  one, t he re  is a necess i ty  f o r  c rea t ing  s u f f i c i e n t l y  simple and r e l i a b l e  

methods of computation. 
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I n  t h i s  paper w e  propose a new v a r i a t i o n  of t h e  numerical method f o r  ob- 

ta in ing  "exact" so lu t ions  t o  t h e  boundary layer  equations, i e e e 9  t h e  method of 

successive approximations. 

To some degree t h i s  method u t i l i z e s  the  method of ana ly t i ca l  procedures 

compiled i n  the  many years  t h a t  boundary l aye r  theory has been i n  exis tence 

combined with the  numerical methods; and i n  t h i s  manner i t  permits us t o  ob- 

t a i n  v i s i b l e  r e s u l t s  even i n  the  complex problems of boundary layer  theory. 

The p o s s i b i l i t y  of obtaining f i r s t  approximations i n  ana ly t i ca l  form from t h i s  

. method (as a r u l e ,  no more than two i n  complex problems; t h e  zero approxima- 

t i o n  is given) permits us t o  write the  approximate so lu t ions  i n  e x p l i c i t  form, 

the  accuracy of which may be estimated using t h e  method i t s e l f  by computing 

t h e  remote approximations on an e l ec t ron ic  computer which w i l l  simultaneously 

give t h e  "precise" so lu t ion  t o  the  problem as w e l l .  

A t  the  present t i m e  t he  convergence of t h i s  method has not been proven. 

There is "experimental" evidence of the  convergenck of the  method obtained 

by d i r e c t  computation on an e l ec t ron ic  computer of a l a rge  number of approxi- 

mations (more than 20). Furthermore, t h e  convergence of t he  method has been 

evidenced on the  simplest  model l i n e a r  problems when the  so lu t ion  can be  

wr i t t en  i n  the  common recur ren t  form a t  each s t e p  of t h e  i t e r a t i o n s .  

A r a t i o n a l  formulation of t h e  problem is very s i g n i f i c a n t  i n  t h e  applica- 

t i o n  of any method t o  the  complex problems of boundary layer  theory. There- 

fore ,  much a t t e n t i o n  must be paid t o  t h i s  s i d e  of t h e  question before t h e  

method of successive approximations is used. F i r s t  of a l l  t h e  equations f o r  

a p a r t i a l l y  ionized boundary layer  with t h e  respec t ive  exclusion of an electrhc 

f i e l d  a r i s i n g  due t o  separat ion of t he  charged components during d i f fus ion  

are reduced t o  t h e  type which agrees  i n  form wi th  the  ordinary boundary l aye r  

equations f o r  a mixture of neu t r a l  components. Secondly, by using t h e  condi- 

t i o n s  of chemical balance, t h e  equations f o r  a chemically balanced boundary 

l aye r  are reduced to a new form s u i t a b l e  f o r  a c t u a l  solut ion.  
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We shall discuss in detail the boundary conditions both on an impermeable 
surface and on a thermochemical wall. We shall cite the exact structural 
formula for the effective enthalpy of the thermochemical disintegration of-the': 
wall material of arbitrary chemical composition. 

. - . 

. -  _ _  

§ 1. MEmOD OF SUCCESSIVE APPROXIMATIONS 

Let us discuss, using the method of successive approximations [l], the - /4 
simplest problem of integrating the 
an incompressible liquid. For sufficiently large Reynolds numbers the flow of 
a viscous liquid near a body is described by a Prandtl system of equations [4] 

boundary layer equations for the case of 

Here 0 < x < X, 0 < y < QD. In this case we must satisfy the conditions: - -  - -  

(1.2) u Y X ,  0) = Q, zp 'fs, 0)- & f = q  

To these conditions must be added the "initial" condition when x = 0. The 
initial profile is given in problems on extension of the boundary layer: 

when' j / a o  

and we must determine the flow in a boundary layer when x > 0 .  

In problems of plane-parallel symmetrical and axisymmetrical flows, we 
P -  
I *  have a physically obvious condition on the center line of the current passing 

. through the leading critical point 

. -. . . . . , 
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According t o  the  physical sense of t h e  problem, u'(x,y) > 0 when x > 0, y > 0. 

In  t h i s  problem x is  t h e  coordinate along t h e  surface of the  body, y is  

t h a t  along the  normal t o  t h e  surface of t h e  body, u.', v'  are pro jec t ions  of 

t h e  ve loc i ty  vector,respectively,along t h e  axes x and y ,  k = 0 with flow 

around a two-dimensional p r o f i l e ,  k = 1 with a flow around a body of revolu- 

t i on ,  r ( x )  i s  t h e  rad ius  of t he  c ross  sec t ion  of t he  body of revolut ion,  v is 
t h e  coe f f i c i en t  of kinematic v i scos i ty ,  u (x) is  t h e  given ve loc i ty  of t he  non- 

viscous flow on the  body under considerat ion,  vw(x) is  a spec i f ied  funct ion 

which gives  the  flow l a w  along the  sur face  of a body of a l i q u i d  having ' the  

same proper t ies  as t h e  oncoming flow. Reference [5] examines the  questions 

on exis tence and uniqueness of the  so lu t ion  of t h i s  problem using t h e  method o f -  

f i n i t e  differences.  Here we give t h e  algorithm of t h e  ac tua l  ca lcu la t ion  of 

t h e  so lu t ion  t o  the  problem and furthermore mention the  method f o r  obtaining 

t h e  approximate solut ions.  Apparently t h e  method f o r  obtaining the  so lu t ion  

may i t s e l f  serve as the  b a s i s  f o r  evidence of t h e  exis tence and uniqueness of 
t h e  so lu t ion  t o  the  Problem (1.1) - (1.4)* 

amined i n  the  present  paper. 

e 

4 

However,this question is not  ex- 

L e t  us introduce the  flow funct ion Jl(x,y) 

and transform it i n t o  new independent va r i ab le s  

where 6(x) is as ye t  an a r b i t r a r y  funct ion of X. 

I f  we represent  the  flow funct ion i n  t h e  form 

6 



then the  ve loc i ty  components a r e  described by i t  as: 

and the  momentum equation and the  boundary condi t ions assume the  following form 

,Problem (1.8) can be f u r t h e r  

b s tead  of x 

Then 

s implif ied i f  we introduce the  coordinate  s in- 

If w e  i n t e g r a t e  the  previous equation over t he  va r i ab le  n from n t o  00 and use 

the  known asymptotic funct ion u(s,n) and f ( s ,n )  a t  i n f i n i t y  E51 
D 

we then f ind  the  following in t eg ro -d i f f e ren t i a l  equation 

where 

7 



Inc identa l ly  l e t  us mention t h a t  i f  we set 6 - = 1 and n = 0 i n  (1.11) we then 

f ind  the  i n t e g r a l  Karman re l a t ionsh ip  i n  Prandt l  form i n  the  va r i ab le s  s, q., 
on the  b a s i s  of which the  well-known approximate method of Karman-Pohlhausen 

has been developed [3].  

However,we s h a l l  d i scuss  fu r the r  the  exact  method f o r  the so lu t ion  based ~ 

on the  use of t he  method of successive approximations. 

For t h i s  l e t  us  i n t e g r a t e  Equation (1.11) by 11 from 0 t o  n: 

I ." 

Now l e t  us  def ine  the  funct ion 6(s) with the  spec i f i ed  funct ion u(s,q) 

as the  so lu t ion  t o  the  following ordinary d i f f e r e n t i a l  equation 

which follows from Equation (1.13) i f  w e  d i r e c t  q t o  i n f i n i t y  i n  i t  and use 

t h e  boundary condi t ion u ( s 9  a) = 1. Now i f  we t ake  any so lu t ion  t o  Equation 

(1.15) and s u b s t i t u t e  i n  (1.13)3 we f ind  an in t eg ro -d i f f e ren t i a l  equation of 

t he  type 

8 



where the  operator  9 w i l l  always s a t i s f y  t h e  condi t ions 

Therefore,to obta in  t h e  solution,we can arrange t h e  following i t e r a t i o n  pro- 

cess 

(1.17) 

which is  c h a r a c t e r i s t i c  i n  t h a t  a t  each s t e p  of t h e  i t e r a t i o n  t h e  following 

boundary condi t ions w i l l  always be s a t i s f i e d  

The opera tor .$  is  easy t o  construct.  

(1.18) 

6 -  / 6  

I n  t h e  absence of a flow the  so lu t ion  t o  Equation (1.15)9 which satisfies 

t h e  condi t ion 6(0) = 0, w i l l  be the  funct ion 

Subs t i tu t ion  of i t  i n t o  (1.13) w i l l  g ive t h e  func t iona l  equation i n  the _" 

following e x p l i c i t  form 

where 

9 



I n  the  va r i ab le s  x, TI t h e  operator  $ w i l l  be 

d4-l l% 
where 4/")'_&- 
(1.14) and (1.20) i n  which s must be replaced by X. 

, t he  funct ions A, B, C y  G are given by Expressions 

The right-hand s i d e  of Equation (1.21), a f t e r  subs t i t u t ing  i n t o  i t  t h e  

a r b i t r a r y  in tegrable  funct ion which s a t i s f i e s  only t h e  condi t ions i n  (1.18), 

w i l l  always s a t i s f y  (1.16). Equation (1.21) may therefore  serve as a bas i s  

f o r  construct ing t h e  i t e r a t i o n s  according t o  t h e  Algorithm (1.17) successively 

f o r  each cross  sec t ion  s = const  (x - const) ,  beginning from s = x = 0 ,  

t h e  process converges t o  a c e r t a i n  l imi t ing  funct ion u(s ,y) ,  then t h e  so lu t ion  
to  t h e  o r i g i n a l  Problem (1.1) - (1.2) w i l l  be the  expression 

If 
% 

i n  which it  is  easy t o  v e r i f y  d i r e c t  subs t i tu t ion .  

After  making the  necessary number of i t e r a t i o n s ,  determined by the  re- 

quired accuracy, we can compute the  f r i c t i o n  on the  w a l l  by using Expression 

(1.17) which w i l l  niive 

or  i n  t h e  v a r i a b l e  x 

10 



where 

(1 e 25) 

For self-similar so lu t ions ,  i .e. ,  when a aC*S*, c , we w i l l  have 

Then these  so lu t ions  are obtained by i t e r a t i o n  of t h e  simpler equation 

(1.26) 

(1.27) 
!- . . /  ‘ 

For example, t he  so lu t ion  t o  t h e  Blasius  problem (m = 0) w i l l  be found com- 
p l e t e l y  from the  simple funct ional  equation 

,. 

I n  the  presence of a flow ( $ J ~ ’  # 0) construct ion of t h e  operator  4 is more 

complex. I n  t h i s  case Equation (1.15) is an Abel equation of second kind 

which by s u b s t i t u t i o n  of 

11 



is  brought t o  the  form 

(1.30) 

With a flow equal t o  zero (F = 0) ,  t he  so lu t ion  t o  t h i s  equation w i l l  be the  

funct ion Z + 6(s)E-'(s), where 6(s) i s  given by Expression (1.19). 
12 

In  the  general  case Equation (1.30) is  not in tegra ted  by quadratures. 

Therefore,construction of the  operator i n  t h e  presence of a flow i n  e x p l i c i t  

form is  impossible. 

t h e  following manner. I n  the  ac tua l  da ta  on the  q u a l i t a t i v e  character  of 

t h e  ve loc i ty  p r o f i l e  i n  a boundary l aye r  w e  g ive  t h e  funct ion u(O) (s,n), 
which s a t i s f i e s  t h e  conditions i n  (1.18). 

i 

In  t h i s  case the i t e r a t i o n  process can be constructed i n  

We then, so lve  t h e  ordinary d i f f e r -  

e n t i a l  Equation (1.15) with the  i n i t i a l  condition 6(0) = O., Then from (1.13) 

,we f i n d  the  p r o f i l e  u(')(s,q) i n  f i r s t  approximation,and then t h e  process is 

repeated. 

L e t  us give  the  form f o r  wr i t ing  t h e  above algorithm t h a t  is f i n a l  and 

more convenient for ana ly t i ca l  and numerical i t e r a t i o n s  both i n  t h e  var iab les  

s and q, 

(1 ., 31)- 
- . ._ . . 6CO) = 0 

and in t he  va r i ab le s  x and q0 

12 



After finding the necessary number of i t e r a t i o n s  we can compute the  f r i c t i o n  

on the wal l  from one of the  formulas 

Thus, i n  the presence of a flow it  i s  necessary i n  each cross  sec t ion  s = 

const (x = const) t o  have, generally speaking, a numerical so lu t ion  to  t h e  

auxi l ia ry  ordinary d i f f e r e n t i a l  equation f o r  the  function 6(s). However,in . 
the  numerical r ea l i za t ion  of t h i s  process,the appearance of an ordinary d i f f e r -  

e n t i a l  equation fo r  the aux i l i a ry  function 6(s) does na t  complicate the  com- 

putat ions very much. 

COMMENTS 

1. In any convergent method of successive approximations the choice of 

the i n i t i a l  approximation w i l l  determine the  necessary number of i t e r a t i o n s  

t o  obtain a spec'ified accuracyo As the  zero approximation we recommend using 

13 



0 the function u(O) = u (TI), which depends only on rl. Such a simple assignment 
of the zero approximation is connected with that property of the boundary lay- 
er equations which, with a sufficiently smooth function Ue(x), the solution 
to Equation (1.10) will differ little from the quasi-self-similar solution ob- 
tained from Equation (1.10) if we delete the derivatives of s in it. With 
such a choice u(O) the dependence on s appears in the first approximation 
through the function 6(s).  In Reference [l] two different initial functions 

(O) = $I (TI). The second function brought were chosen: u = 1 - exp(-n) and u 
the iteration process to solution more rapidly. 

0 

2. It is important to mention that in this method of successive.approxi- 
mations we expect convergence of the variables x, y or x, y [see (1*23)], but 
not in the variables s, 17 or s, rl, ire., 

, 

tal 
The limit $phh (52) may also not exist. "he convergence of the 

method was proven experimentally by direct computation of a large number of 
iterations [l] . 

5 2.  BASIC EQUATIONS AND BOUNDARY CONDITIONS FOR PROBLEMS 
IN LAMINAR MULTI-COMPONENT BOUNDARY LAYER THEORY WITH HOMO- 
GENEOUS AND HETEROGENEOUS REACTIONS FOR FLOW AROUND BODIES 
WITH IMPERMEABLE AND THERMOCHEMICALLY DISINTEGRATING WALLS 

2.1 Basic Concepts 

In flow of a gas around a body involving a high enthalpy of deceleration : 

. .  . . .., .:, .;e- : 
,. : . . .. .. . .  __. ., 

(for example, ho - > 1500 - 2000 cal/gram) an intense heating of this gas takes 
place as a result of which its surface begins to become khermochemically 
disintegrated. 
material and the conditions of the streamlining,the disintegration may take 

Depending on the physico-chemical properties of the body's 

14 



place due t o  melting, evaporation, sublimation, heat ing,  pyrolysis ,  mechanical 

d i s in t eg ra t ion ,  and most o f t en  due t o  the  simultaneous occurrence of several 

of these  processes.  

mixture of gases flows t o  t h e  boundary l aye r  from the  surface of t he  body, 

s o l i d  o r  l i qu id ,  due t o  the d i s in t eg ra t ion ;  t h i s  mixture may en te r  i n t o  

chemical r eac t ion  with the  gas  of t he  boundary l aye r  which i t s e l f  i n  t u rn  is 

a r a t h e r  complex mixture of products of d i s in t eg ra t ion  and ion iza t ion  of t he  

approaching current .  

i n  which severa l  homogeneous chemical reac t ions  may take place simultaneously. 

I n  order f o r  these  reac t ions  t o  be independent, i t  is  necessary and s u f f i c i e n t  

t h a t  a t  least one of t h e  components i n  each reac t ion  not  appear i n  any o ther  

react ion.  L e t  N be the  t o t a l  number of components i n  t h e  flow. L e t  t h e  

number of independent components, f o r  which we can i n  p a r t i c u l a r  take the  

chemical elements and t h e  e lec t ron  components, be Ne. 

Ignoring mechanical transport ,we s h a l l  assume t h a t  a 

Thus,we are concerned with t h e  laminar boundary layer  

Then a l l  o ther  compon- 
e n t s  Ai ( = 1, ..., Nr = N - Ne) can be expressed due t o  the  N reac t ions  r 
through the  base components A .  (j = 1, N >, i n  p a r t i c u l a r  i n  the  follow- 

i ng  form 
J e 

I 

Here A.  and A .  are the  chemical symbols of the  components, v . .  are t h e  

s toichiometr ic  coe f f i c i en t s ,  i.e., i f  we take t h e  reac t ion  products A ( i = i 
1, ...$ N ) which form as a r e s u l t  of the  reac t ions  from the  base components 
A.  ( j  = 1, . e . ,  N ) only once i n  each reac t ion  and expand them from t h e  l e f t ,  

and i f  w e  expand a l l  o ther  components from the  r i g h t  and d iv ide  by t h e  s to i -  

chiometric c o e f f i c i e n t  i n  f r o n t  of t he  reac t ion  product, t he  choice of inde- 

pendent r eac t ions  can be wr i t t en  i n  the  form of (2.1)* 
t h e  f i r s t  l a w  of thermodynamics, t he  hea t s  of t h e  reac t ions  which are necessary 

f o r  formation of the  mass u n i t  of t h e  products A with constants  p and T, are 

determined by equations 

1 J 1J 

& r 
J e 

I n  accordance with 

i 
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where Qi(T), [Qi] = cal/gram is  the  heat of the  i - th  reac t ion  per gram of t h e  

product Ai, mi is  t h e  molecular weight: of t h e  i - t h  component, hi, [hi] = 

cal/gram is t h e  s p e c i f i c  enthalpy of the i - th  component, determined by t he  

d i f f e r e n t i a l  equation 

$p ='ei(rl (i"f, . ... M) 

where Cpi , [Cpi] = cal/gram*deg is  t h e  s p e c i f i c  enthalpy of t h e  i - th  compon- 

ent .  

I f  t h e  hea t s  of t h e  reac t ions  are given, then from (2.2) i t  follows that 

N of the  en tha lp ies  h 

base components h . .  

are expressed l i n e a r l y  through the  enthalpy of t h e  r i 

J 

W e  fu r the r  assume t h a t  t h e  mixture of gases i n  the  boundary l aye r  is  a 

mixture of i d e a l  gases,  i.e., t he  enthalpy of t h e  mixture i s  equal t o  

, where p 

' t h e  mass concentration of the i - th  component, p ,  [ p ]  = gram/cm3 is t h e  densi ty  

[p  .] = gram/cm3 is  the  mass densi ty  of t h e  i - t h  component, Ci is  is 1 

of t h e  mixture. 

L e t  us  compute t h e  d i f f e r e n t i a l  of t he  enthalpy of t he  mixture by using 

(2.2) 

16 



where C [Cpj]  = cal/gramedeg i s  t h e  spec i f i c  enthalpy of t he  j - th  compon- 
P j  ' 

e n t ,  c*- i s  the  concentration of t he  j - th  element, equal by d e f i n i t i o n  t o  3 

Here m . .  is  t h e  amount of t he  mass of t he  j - th  element i n  the  i - th  component. 
J =  

By d e f i n i t i o n  t h e  concentration of C 3  i s  t h e  concentrat ion of t he  j - t h  ele- 
J 

ment regard less  of what component i t  i s  located in .  

chemical reac t ions  (no ionizat ion)  occur i n  t h e  flow and as t h e  base com- 

For example, i f  only 

ponents w e  select t h e  chemical elements, then C3 represents  t h e  concentration 

of t he  chemical element regardless  of what component it is  located in .  In  

t h e  case of an a r b i t r a r y  choice of t h e  base components (A. are not necessar- 

i l y  chemical elements) t h e  concentrations C3 ( j  = 1, ..., Ne) w i l l  be termed 

concentrat ions of base elements o r  simply concentrations of elements. 

t h e  presence of ion iza t ion  t h e  e lec t ron  component w i l l  always be included i n  

t h e  group of base elements. 

J 

J 
J 

In  

, 

As an example, l e t  us  look a t  a mixture composed of elements of 0, N, E 

(electron) ,  i n  which, f o r  example, s i x  independent reac t ions  take  p lace  

The concentration of elements here  w i l l  be given by the  formulas 
__ ̂ - * 

L e t  us f u r t h e r  look a t  t h e  flow under the  condition t h a t  t h e  mixture of gases /10 
a t  each poin t  is quasi-neutral, i ,e.,  i f  n$ is t h e  number of p a r t i c l e s  of t h e  

17 



i - th  s o r t  per u n i t  volume, e is  the  charge of t h e  i - t h  p a r t i c l e ,  then the 

condition of quasi-neutral i ty  can be wr i t t en  as 
i 

_. 

where xi is t h e  molar (numerical) concentration of t h e  i - t h  component, NA is 
t h e  Avagadro number. 

The condi t ion of quasi-neutral i ty  (2.8) may be wr i t t en  i n  t h e  form 

(2.10) 

where N 

t h e  left-hand s i d e  of Condition (2.10) is simply t h e  c p c e n t r a t i o n  of t h e  

e l ec t ron  elements. 

n e u t r a l i t y ,  t h e  concentration of t h e  E element i s  always equal t o  zero 

is  t h e  number of ions i n  the  mixture, e i s  t h e  e lec t ron  charge. But I 

Therefore,in the  framework of t he  assumption of quasi- 

(2.11) 

Equation (2.11) may be assumed t o  be an i n t e g r a l  of t h e  bas ic  equations of 

motion, which w i l l  be given below. 

I f  t h e  concentrations of elements are retained i n  t h e  cur ren t  as a re- 
s u l t  of t h e  condi t ions of t he  problem, i.e.9 C* - const  (j = 1, ..., Ne)$ 
then from (2.4) i t  follows t h a t  

j 

18 
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This w i l l  be t h e  case , for  example,in the  case of gas  flow i n  t h e  absence of 

diffusion.  However,in real cases with d i f fus ion ,  even without t h e  addi t ion  

of supplementary components t o  the  flow from the  s i d e  of t h e  boundaries, t h e  

concentrations C$ w i l l  vary from poin t  to  poin t ,  i.e., t h e  l i q u i d  p a r t i c l e  

i n  a real flow from t h e  viewpoint of thermodynamics w i l l  always be an open 

system,and the  change i n  enthalpy dh f o r  i t  w i l l  be computed from Formula 

(2.4) r a the r  than from (2.12). 

J 

2.2 Basic System of Equations f o r  a Laminar Multi-Component Boundary 

Layer 

The equations of a laminar asympotically t h i n  two-dimensional s t a t iona ry  

boundary l aye r  on two-dimensional paths (plane-paral le l  motion) and t h e  bodies 

of revolut ion (axisymmetric motion), allowing f o r  t h e  chemical reac t ions  and 

t h e  ion iza t ion  reac t ions  without allowing f o r  t h e  ex te rna l  electromagnetic 

f i e l d s  and the  r ad ia t ion  f i e l d ,  have the  form [6]: 
/ 

Equation of cont inui ty:  

Momentum equation projected onto the  y-axis: .." 

Equation of d i f fus ion  of t he  components: 

along with t h e  Stefan - Maxwell r e l a t ionsh ips  

(2.13) 

(2.14) 

(2.15) . 

19 



The heat flux equation: 

(1) along with the expression f o r  the reduced heat f lux 

and the express 

(2.21) 

The equation of state 

(2.22) 
I _  

. .  

Terminology of 1. Progozhin 171. 
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Here x is  t h e  l i n e a r  coordinate along t h e  surface of t he  body, y is t h a t  along 

the  normal t o  t h e  body's surface,  i .e. ,  w e  have chosen t h e  usua l ly  accepted 

coordinate system here: t h e  normals t o  t h e  genera t r ices  of t he  body and 

t h e i r  orthogonal t r a j e c t o r i e s ,  u,  v are the  pro jec t ions  of t he  ve loc i ty  vector  

onto t h e  x and y-axes, r (x )  is  t h e  rad ius  of t he  c ros s  sec t ion  of t h e  body 

of revolut ion,  k = 0 with flow around a two-dimensional path (plane-paral le l  

problem), k = 1 f o r  flow around a body of revolut ion (axisymmetrical problem), 

Ji [Ji] = gram/cm sec is  t h e  mass d i f fus ion  flow of t h e  i - t h  component i n  ~ 

t he  d i r e c t i o n  of t he  y-axis, Wi, [W.]  = gram/cm sec is  t h e  m a s s  rate of form- 

a t i o n  of t h e  i - th  component per u n i t  volume per  u n i t  of time due t o  a l l  t h e  

possible  reac t ions  i n  the  boundary l aye r ,  Vi is  t h e  d i f fus ion  ve loc i ty  of t he  

. 2  

3 
1 

CI 
L i - th  component, a . . ,  [a . . ]  = sec/cm is t h e  coe f f i c i en t  of res i s tance ,  t he  

1J =J 
expressions f o r  which w i l l  be given below, k is  the  Boltzmann constant ,  e is 

t h e  e l e c t r i c  charge of t h e  i - th  component, E i s  the  electric f i e l d  s t rength  

which arises due t o  the  separat ion of charges ( the  ex terna l  f i e l d  is  equal t o  

zero), Di , [Di 3 = gram/cm*sec is the  coe f f i c i en t  of thermal d i f fus ion  of 

t he  i- th component, T is  t h e  temperature, U (x) i s  t h e  spec i f ied  ve loc i ty  of 

t he  nonviscous flow on a given body, P i s  the  pressure,  m i s  the  mean molecu- 

l a r  weight , .n  is t h e  number of moles per  u n i t  volume, is the  c o e f f i c i e n t  of 
dynamic v iscos i ty ,  X is t h e  ordinary coe f f i c i en t  of thermal conductivity,  t h e  

coe f f i c i en t  A '  is  computed i n  t h e  k i n e t i c  theory'of gases through the  ex- 

pansion c o e f f i c i e n t s  i n  t h e  Sonin polynomial [8], R 

constant ,  N i s  t h e  number of components i n  t h e  mixture; t he  o ther  symbols 

are given i n  Section 2 , l .  The last term i n  (2.16),and (2.17) expresses the  

e f f e c t  of thermal d i f fus ion ,  t he  second term i n  (2-19) is the  appearance of 

the  d i f fus ion  thermal e f f ec t .  

i 

T T 

e 

is  t h e  absolute  gas  A 

Both these  e f f ec t s ,  espec ia l ly  t h e  lat ter,  have & 
l i t t l e  inf luence on the  so lu t ion  t o  t h e  problem i n  t h e  case of a mixture of 

neu t r a l  gases,  s ince  the c o e f f i c i e n t s  of thermal d i f fus ion  Dit ( i  = 1, ... 
N) i n  t h i s  case are small. 
is a suspicion t h a t  these e f f e c t s  may make a considerable contr ibut ion t o  

t h e  so lu t ion  of t he  problem. 

s t i l l  not  clear. 
viscous t ranspor t  of momentum, w i l l  occur on t h e  s t rength  of t he  approxima- 

In  t h e  presence of s i g n i f i c a n t  ion iza t ion  t h e r e  

However t h i s  question a t  t h e  present  time is 

The e f f e c t  of barodiffusion,  j u s t  as t he  e f f e c t  of t h e  
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t i ons  i n  the  boundary layer  theory(2).  

j =: 1, 2, 
i n t e rac t ion  of the  component p a r t i c l e s  obeys during t h e i r  convergence. With 

a Coulomb in t e rac t ion  of the  par t ic lesswe have i n  f i r s t  approximation the  com- 

puta t ions  of t he  t ranspor t  coe f f i c i en t s  181 

The c o e f f i c i e n t s  of resistance a (K, i j  
N) have a d i f f e r e n t  expression depending on which l a w  the  

- -  
A 

c 
3 ay. = L D ~ * I ~  = 

mi - 

- __-- - _ _  _ _ _  

where A , .  is  t h e  Coloumb logarithm. 
XJ 

With the  in t e rac t ion  between t h e  p a r t i c l e s  and t h e  Lennard - Jones Po- 

tential  (6 - 12) [ 8 ] ,  
- _- I 

t 

I ,  
i 

B~~~~~ 

--- 

- -- - . ~ ---- 

where Q is  the  d is tance  between p a r t i c l e s  of i - t h  kind f o r  which t h e  energy 

of t h e  in t e rac t ion  is equal t o  zero, c is t h e  absolu te  value of the maximal 

energy of a t t r a c t i o n ,  

i 

a 4z* CdplJg(~-. '  i 
f"d) is a known func t ion  which depends weakly 

' on t h e  temperature when ~~~~~$ [ 8 ]  e 

With the  in t e rac t ion  between r i g i d  spheres having diameters (I and CI we 
i j 

have 
. .  . ..:., _/, 
, . .. .;p,., :,. 
I. :. . .:. . ;:. ?. 

, 
. ,  

(2) Proof of t h e  small inf luence of t h e  viscous momentum t ranspor t  i n  
I 

approximation of t he  boundary l aye r  theory was  given in  t h e  t h e s i s  of G. A, 
Danilin,  a s tudent  a t  Moscow S t a t e  University6 
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It should be  mentioned tha t ,  unl ike the  las t  formula f o r  a the expression 

f o r  cr.. i n  t h e  case of i n t e rac t ion  with t h e  Lennard - Jones po ten t i a l ,  a = 

1/2 (a -I- a.), is  a semiempirical one, j u s t  as t h e  formula f o r  E . . .  

(2,13) - (2.22) along with (2.11) represents  a nonlinear system of 2N + 5. 

Equations (2.13) - (2.18), (2.22) f o r  2 N  + 5 unknown functions: fl, 5 

i j  ' 
1J i j  

The System 
i J  1J 

((=44.., /J/~ The pressure P is given as a funct ion of xe 

In  an ac tua l  so lu t ion  t o  the problem, i t  is  o f t en  convenient t o  introduce . 

t he  concentrat ions of elements (2.5). L e t  us obta in  equations f o r  them. 

In  the  presence of a r b i t r a r y  reac t ions  i n  the  flow, t h e  element as such 

Therefore i f  t h e  equations does not  disappear and does not appear i n  the  flow. 

of d i f fus ion  of the  components (2.15) are mult ipl ied by t h e  mass of t h e  j - th  

by mji = v and are summed over a l l  . element i n  the  i - th  component, i.e., 

components, we  then f ind  Ne equations of d i f fus ion  of t h e  elements i n  t h e  form, 

/m 
i j m j  i 

I 
.__I_ - - - ._- - - _ _  - - -  

I 

(2.23) 

deT= /v!! NZ 1 
- -- _-_-. - L i  

of t h e  above 

I 

s ince  on t h e  s t r eng th  

(2.24) 

L e t  us mention t h a t  t he  equations i n  (2.23) are v a l i d  always, whether r eac t ions  

take place o r  no t  and whether they take place a t  a f i n i t e  rate OK a t  an in- 
f i n i t e  rate (chemical balance). 

If we write Equation (2.23) f o r  the  e l ec t ron  component, then on t h e  

s t r eng th  of (2.11) we f i n d  
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where f ( x )  is  an a r b i t r a r y  function. 

t o t a l  charge t ranspor t  across  the  boundary l aye r  

For i t s  determination we compute the  

- I 1 3  

where v is the  mean s t a t i s t i c a l  ve loc i ty  of t he  i - t h  component. 

follows t h a t  i f  the  ionized gas does not  contact  t h e  ex te rna l  conductors, i n  

the  f u t u r e  we s h a l l  assume t h a t  JE = 0 a t  the  boundary, whence f ( x )  0:' 

Consequently, w e  s h a l l  have still  one more i n t e g r a l  

Hence,it i 

1 r.! 

I 

Furthermore, w e  always have 

(2.26) 

(2.27) 

which follows from the  determination of t he  concentrat ions and flows. Thus, * 

e i n  our formulation, four  i n t e g r a l s  e x i s t  (2.11)9 (2.26) and (2.27) which w e  

s h a l l  use i n  the  fu ture .  The equations i n  (2.23) are preferab le  t o  those i n  

(2.15), s ince  these  la t ter  contain a non-zero right-hand s ide  (mass sources).  
- - - - 

' However, the  equations i n  (2.23) i are smaller than N . T h e m i s s i n g  N - -Ne = - - _  __ - . _.- - 
N r  equations f o r  the  concentrat ions w i l l  be, i n  the  case of reac t ions  taking 

place a t  f i n i t e  rates, the  equations of d i f fus ion  f o r  t h e  reac t ion  products 

(2.28) 

24 



I n  the  case of r eac t ions  taking place with i n f i n i t e  r ap id i ty  i n  the  flow 

(chemical .balance), these w i l l  be t h e  condi t ions of equilibrium 

(2.29) 

. 
where - -  P i is t h e  p a r t i a l  -- pressure - of 'fhe-i-th .- _ -  component,-Kp, _ _  i ( T )  i s - a  known - .-- 

e- 

constant of equilibrium of the  i - th  react ion.  I n  accordance with the des- 

c r i p t i o n  of t h e  reac t ion  i n  t h e  form of (2.1)9 these  condi t ions are rewr i t t en  

as 
.. . ._.. .. .- .. . . ... . . . -. . ._ 

(2.30) 

By convert&ag i n  the  last expression t o  mass concentrat,ans, we  ultimate- 
I 

l y  f ind  

I n  t h e  case of chemical balance from Equations (2.15), a f t e r  solving t h e  

problem, we can compute t h e  left-hand s i d e  and i n  the  same way compute the  

d i s t r i b u t i o n  of mass sources W .  (i = 1, N) due t o  the  balanced chemical 

reac t ions .  Howevero as a r u l e ,  t h i s  i s  no t  done i n  the l i t e r a t u r e .  To con- 

clude t h i s  s ec t iono  l e t  us transform the hea t  f l u x  equation (2.18) t o  a more 

convenient form; l e t  us  introduce i n t o  i t  e x p l i c i t l y  t h e  hea t s -o f  t h e  re- 
act ions.  

equations i n  (2.15), may be represented as 

1 

This  last tenn  i n  Equation (2.181, allowing for (2.2) and the 

+ 
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since on the strength of conservation of the mass of elements in the Reactions ' 

(2.1) the following conditions are always satisfied: 

(2.32) 

If' we substitute Expression (2.31) into (2,181, we find 

Using (2.2) the last two terms are transformed into simpler form 
- I -_ 

after which the heat flux equation will be 
_I - 
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I n  such a form of the  heat  f l u x  equations,  i t  is  easy t o  compute &he inf luence 

of the  hea t s  of t he  reac t ions  on the  temperature. 

I f  Equation (2.14) i s  mult ipl ied by u and added t o  the  heat  f l u x  Equation 

(2.33),we then f ind  the  equation of energy described through the  temperature 

... ....... -. . . . .  - 

The equation of energy i n  such form can be conveniently used i n  t h e  

presence of chemical reac t ions  occuring a t  f i n i t e  o r  i n f i n i t e  rates. For 

frozen" flows the  hea t  f l u x  equation is obtained from (2.18) i f  w e  set Wi = 0 ?I 

( i  = 1, e .  ., N) i n  it; the  equation of energy f o r  a "frozen" flow w i l l  be 

L e t  us int roduce i n t o  (2.34) the  concept of t o t a l  enthalpy i n  the  gre- 

sence of chemical reac t ions .  

without allowing f o r  r ad ia t ion  along the  j e t  stream on t h e  surface,-there re- 
mains a constant value ( t o t a l  enthalpy of t he  advancing current)  

With the  flow of an i d e a l  gas  around a body, 

._ 

which with the  a id  of (2.2) can be represented i n  t h e  form 

i 

zi. 37) 

where the  index "e" reEers t o  the  parameters of t h e  nonviscous gas on the  
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w a l l  o r  i n  the  boundary l aye r  s c a l e  t o  t h e  condi t ions on the  outermost bound- 

a ry  of t he  boundary l aye r ,  the  index "CQ" r e f e r s  t o  t h e  condi t ions i n  the  ad- 

vancing flow. 

boundary l a y e r  i n  the  presence of chemical reac t ions .  

t i v e ' p a r t  i n  ( 2 . 3 4 )  can be represented as, f o r  example, 

It is  convenient t o  have such a value also f o r  the  flow i n  a - 115 
Using (2.2), the convec- 

Here w e  have used the  condi t ions e*= 0; which express t h e  f a c t  t h a t  

along the  j e t  stream of an ex terna l  nonviscous flow t h e  concentrat ions of ele- 

ments are re ta ined .  

t i o n  ( t o t a l  enthalpy) ins tead  of t h e  temperature T, 
Now i f  i n  Equation ( 2 . 3 4 )  we 'introduce a' new unknown func- 

._ 

( 2  3 8 )  

which on t h e  s t r eng th  of ( 2 . 3 6 )  and ( 2 . 3 7 )  w i l l  be constant  a t  the  outermost 

boundary of t he  boundary l aye r  

(2.39) 

i t  then assumes the  following form 
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f 
9 

' 

or  by using Equation ( 2 . 3 3 ) ,  t he  following form 

'where &=e- is t h e  Prandt l  number. 

L e t  us transform t h e  right-hand s i d e  of Equation (2.61) such t h a t  t he  

ifunction H en te r s  i n t o  it. We f ind  by using ( 2 . 2 )  
! 

I 1  

- -I_ * :  
I t 

I 

- __ 
8 

Then Equation (2.41) can be wr i t ten  i n  the  following form 

. L e t  us note  t h a t  with i d e n t i c a l  s p e c i f i c  hea t s  of t h e  elements,or when the 

element is alone, t h e  sums of the  l e f t  and t h e  r i g h t  f o r  J disappear from Nr 4- 

1 t o  N. 

- /I6 

I n  p rac t i ce ,  f o r  t h e  majori ty  of sets of elements, this assumption is 

' s a t i s f i e d  q u i t e  w e l l .  

The double-sum i n  ( 2 . 4 2 )  which allows f o r  t h e  d i f fus ion  thermal e f f e c t  

: can be f eas ib ly  transformed t o  a more graphic form by excluding from it t h e  
using the def ini-  8 di f fus ion  cu r ren t s  of the  base components ~ ~ ~ E @ ~ ~ : : ~ ! ~  

1 t i o n s  i n  (2.23); then it assumes the  following form 
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where 

Let us exclude the electric field E, by using the condition of plasma quasi- 
neutrality (2.8). 
through the molar concentrations 

For this let us differentiate Condition (2.81, described 
(3) 

'3' 
of equations, 
solutions, 

We can look at Conditions (2.8) as integrals of the basic system 
Therefore,they can be differentiated on the strength of the 
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and s u b s t i t u t e  Expression (2.16) in to  i t .  

f i e l d  which arises due t o  separation of t he  charges 

Hence,then we f ind  t h e  electric 

If we s u b s t i t u t e  t h i s  expression in to  (2,16), we f i nd  a convenient form of 
the  Stefan - Maxwell expressions fo r  t he  de r iva t ives  of t he  molar concentra- 

t i o n s  

1 L e t  us now do t h e  same f o r  the  mass descr ip t ion  of the d i f fus ion .  W e  have 

Thus,the problem w a s  reduced t o  solving the  combined Equations (2.13), (2.14), 

t he  equations of d i f fus ion  f o r  the  reac t ion  products (2.28), and equations of 

element d i f fus ion  (2.33) combined w i t h  Expressions (2.44) o r  (2.46), t h e  hea t  

f l u x  equation (2.18) and Equation (2.22) i n  t he  presence of i n t e g r a l s  (2.11)s 

(2.26) and (2.27). 

' 

The equations represent  a system of 2N f 4 equations f o r  
T $-a f i=g... ,N1 

T -  2N 9 4 unknown functions: u, v, , / _ -  

On t h e  s t r eng th  of t h e  presence of t h e  i n t e g r a l s  one of t h e  d i f fus ion  



equations for the reaction products ( 2 . 2 8 )  can be droppeaand we can also 
drop the diffusion equation for the electron element from the equations in 
( 2 . 2 3 1 ,  

ponents and the concentration and diffusion flux of the electron component 
may be found from the above integrals. 

Then the concentration and the diffusion flux of one of the com- 

If we determine the effective ambipolar coefficients of diffusion in the 
following manner f 9 ,  lo]: 

- 

, 
8 - 
, 

‘ then the Stefan - Maxwell Expressions ( 2 . 4 6 )  will assume the form of genera-. 
, lized Fick laws 

On a given field of concentrations, temperature and pressure, the relation- 
ships in ( 2 . 4 7 )  may be studied as a system of N equations for determining 2N 

unknowns : This system should be supplemented by 
the following three equations 

. .7--s-...-, - 3- BF;. a# , e(%> rN* 

( 2 . 4 9 )  

For a mixture of only neutral components, this latter relationship from 
( 2 . 4 9 )  should be omitted. The second relationship from ( 2 . 4 9 )  indicates that 
the equations in ( 2 . 4 7 )  are not dependent. 
tions from ( 2 . 4 7 )  and ( 2 . 4 9 )  will ,be-N-+-2 . _ .  altogether. - If we - have some solution - 

to this system: $2.. ., , then it is easy to see that the 
solution will also be: a:..:-, 

Therefore,the independent equa- 

-,- 

--- ~ L m : * ~  g% - _  - 
. ~~ .-- - 

ch$j, ~ ~ ~ , ,  $$!!- where a is an arbitrary 
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number. 

'%/YJ, ,.., Y,4/gd- f o r  which the  System (2,47) and (2.49) w i l l  be l i n e a r ,  

t h e  preceding it follows t h a t  t h i s  system w i l l  have a unique so lu t ion  when 

and only when N = 2 ( the  case of a neu t r a l  mixture), and when N = 3 ( the  case 
of plasma). 

Therefore,we s h a l l  assume as  unknown 2N - 1 values:  '%: ...,*a$ '; 
From 

In  t h e  case of a a e u t r a l  mixture when N = 2,the so lu t ioq  w i l l  be: 

(2 e 50)  

n n+l I n  t h e  case of plasma, consis t ing of t h r e e  components (I , I , E), the 

so lu t ion  w i l l  be 

f 

* It is  easy t o  show t h a t  t he  e f f e c t i v e  coe f f i c i en t s  of d i f fus ion  i n  molar des- 

c r i p t i o n  i n  t h i s  p a r t i c u l a r  case w i l l  agree respec t ive ly  with Expressions 

(2.50) and (2.51). I n  t h e  case when N > 2 (neut ra l  mixture) o r  N > 3 

(plasma), System (2.47) and (2.49) has an innumerable set of solut ions.  In  

t h i s  case t o  f ind  the  unique so lu t ion  we must have supplemental equations i n  
an amount N - 2 f o r  t h e  n e u t r a l  mixture and N - 3 f o r  t h e  plasma. 

supplemental expressions may be  obtained only a f t e r  f ind ing  the  ac tua l  solu-'  

7 ,  .become known, where k = N - 2 f o r  a sk t ion ,  when t h e  r a t i o s  yN?'" '- 
mixture of neu t r a l  gases and k = N - 3 f o r  plasma, 

/18 

I 

These 

- 

See Reference [lo] f o r  

I a more de t a i l ed .desc r ip t ion .  Thus, i f  the  d i f fus ion  cu r ren t s  can be repre- 

sented i n  the  form of Fick laws (we can ignore thermal diffusion)$ 

* /  

th8n the  Lewis  - Semenov number must appear i n  t h e  equations 

(2.52) 
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- .  _. 

The d i f fus ion  equations (2.15) and the'energy equation (2.42) can then be 

r ewr i t t en  as: 

where S is t h e  Schmidt number. i 

The v a l i d i t y  of Equations (2.54) and (2.55) ' is  sometimes postulated 

without s u f f i c i e n t  bases f o r  a multi-component mixture with subs t an t i a l ly  

d i f f e r e n t  d i f fus ion  proper t ies  of t he  components. The system of bas i c  

laminar boundary l aye r  equations, given above f o r  t h e  s t a t iona ry  two-dimen- 

s i o n a l  motions, assumes f o r  c e r t a i n  assumptions s t i l l  another series of 

Crocco i n t e g r a l s  besides  those given above which are always va l id .  
i 

L e t  us assume: (1) t h e  s p e c i f i c  hea t s  of t he  elements are iden t i ca l ;  

(2) t he  thermal d i f fus ion  and d i f fus ion  thermal e f f e c t  are s m a l l  - ~ ~ ~ ~ ~ ~ -  

hl= 0([=4...: MI..' 
pla te .  

(i.4 :.., ~ i ,  ; (3) C e S i  - L ; = i  ~ ~ e = - ~ - . ~ ~ ~ N ) -  ; (4) t he  flow is "frozen": 

- t he  s t reamline flow is around t h e  
- 

and; ( 5 )  e= 0 . .  
Then t h e  following p a r t i c u l a r  i n t e g r a l s  are va l id :  

(2 e 56) 

where a, 8, ai, Bi are constants.  
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Thus, i n  t h i s  i d e a l  case,it is s u f f i c i e n t  t o  f i n d  only the  v e l o c i t i e s  

from the  system of two equations (2.13) and (2.14) with known var i ab le  co- 

e f f i c i e n t s  p and v,and t h e  problem w i l l  be completely solved i f  t h e  boundary 

conditions f o r  H and Ci are compatible with (2.56). 

. 

In  t h e  general  case, s ign i f i can t  mathematical d i f f i c u l t i e s  are involved 

. i n  f ind ing  t h e  so lu t ion  t o  the  system of laminar multi-component boundary 

l aye r  equations given above with reac t ions  i n  t h e  cu r ren t  even f o r  p a r t i c u l a r  

problems. 

I n  conclusion of t h i s  s ec t ion , l e t  us cite t h e  Stefan - Maxwell expression 

' allowing f o r  barodiffusion. For the  quasi-neutral  mixture [6],we have 

+ 
, From the  condi t ion of quasi-neutrality,we f ind  t h e  f i e l d  E: 

j If we s u b s t i t u t e  t h i s  expression i n t o  t h e  previous expressions w e  u l t imate ly  

f ind  
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These are two equivalent systems of N - 1 independent equations each. 
2.3 Boundary Conditions. 

The boundary conditions at the outermost boundary of the boundary layer 
: are the ordinary ones. The unknown functions must satisfy the asymptotic 
. approach to their values at the outermost boundary of the boundary-layer: 

# 

The values 
determined from 

(2.57) 

of the functions uefxJF'e 2*'ec"c/ < p/ must be 

solution t o  the problem on the motion of a nonviscous liquid.. 

Furthermore, we shall take advantage of the condition that at the 
outermosf: boundary of the boundary layer the concentrations of elements are 
constant and.equa1 to their values in the approaching current: 

(2 .58 ) '  

The temperature on the sutermost boundary of the boundary layer  must 
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s a t i s f y  the  d i f f e r e n t i a l  energy equation described along the  j e t  Stream of 
t h e  ex te rna l  nonviscous flow 

or ,  which is  t h e  same, 
.'T -- - 
+ __- 

i If we  so lve  t h i s  l a t te r  equation allowing for (2.58),we f ind  

I -Allowing f o r  (2,2), we can write 

' Then from (2.60), (2,61) and (2.58) we f i n d  the  equation f o r  Tc! 

(2.59) 

(2 . 59 ' ) 

(2 b, 60) 

(2 e 61) 

,- /20 

(2.62) : 

I 

4 Here - _  

condi t ions of t h e  problem. 

, (('=4 .'./ 
must g ive  N concentrations a t  the outermost boundary of the  boundary layer ,  

which g r e a t l y  complicates formulation of t he  problem s ince  these da t a ,  as  a 

r u l e p  are lacking. 

bodies by a nonviscous gas i n  the  presence of reac t ions  usua l ly  do not  con- 

t a i n  complete information on the  composition of t h e  gas  on t h e  surfaceo 

are constants  given from t h e  

With ex terna l  flow around bodies usually:CteoSUJ 

U,,Tq G-w ( d =  &. /n /%) ,  q'ce (4°C "') <e)* 

Thus, unl ike the  single-component boundary l aye r ,  he re  w e  

The published so lu t ions  t o  problems of t h e  flow around 
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‘ ’ However,with c e r t a i n  reasonable assumptions r e l a t i v e  t o  t h e  character  of t he  

reac t ions  i n  the  jet  stream of a nonviscous flow over a body o r  with addi- 

t i o n a l  assumptions r e l a t i v e  t o  the  character  of t he  in t e rac t ion  between t h e  

hydrodynamic parameters and the  chemical reac t ions ,  t he  concentrat ions 

Cie(x) can be e a s i l y  found (see [ 6 ] ) .  

L e t  us  note  t h a t  under t h e  condi t ions of (2.57) t he  f i r s t  and second 

de r iva t ives  of t h e  unknown funct ions along y s t r i v e  t o  zero when y + OJ. The _ _  
i n i t i a l ”  condi t ions along t h e  x coordinate w i l l  correspond t o  the  condition 

Quite d i f f e r e n t  boundary eondi- 

f t  

of symmetry on t h e  center  l i n e  of t he  flow. 
G 

i l e m  involved, 

t i o n s  may be given on t h e  surface of a body, depending on t h e  type of prob- 

F i r s t  le t  us  look a t  t h e  classical formulation of t h e  problem of f inding 

viscous f r i c t i o n  and convective hea t  f l u x  f o r  a body t h a t  i s  impermeable f o r  

~ a l l  components and which has a given temperature of t h e  sur face  
I 

(2.63) 
! 

1 T (x) is  a known funct ion of x. 
W 

If t h e  sur face  of t he  body is s t a t iona ry  (no w a l l s  on it), then i n  t h e  

absolute  system of coordinates  associated with t h e  body, t he  condi t ions of 

attachment and impermeability w i l l  g ive 
I 

(2.64) 

The condi t ions f o r  concentrat ions on t h e  body w i l l  be d i f f e r e n t  depend- 

ing on t h e  phyico-chemical proper t ies  of t he  w a l l .  But i n  any case,  f o r  an  

impermeable wall,,the condi t ions o f  zero flow of t h e  elements must be satis- 
f i e d ,  
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, - , .--. 

These conditions essentially [see (2.46)] superpose the relationship on the 
derivatives of the concentrations along the normal ‘coordinate on the wall o 

The remaining N = N - N conditions for the concentrations will de- r e 
Pend on the character of the reactions on the wall. 
catalyzer, then the conditions of chemical balance must be satisfied on it, 
These will often be the reactions of recombination and neutralization,. Thus,,+ 

,If the wall is an ideal 
‘ 

I . .  - . .. . 
.. - -  _I- . .. 

. I  

. - &+r#+.*.+x)v*=/v;1I N&+ N+ = d% 
There will be exactly N conditions in (2.65) - (2.67). 

When the reactions on the wall take place at finite ratesp instead of 
(2.66) and (2.67),it follows that 

2 where ri9 [pi] =’gram/cm sec is the surface density of formation of the i-th _I 121 
component due to heterogeneous chemical reactions. Determination of the 
function ri in each specific case constitutes a fundamental problem. 
Finallyjin the case of a chemically neutral wall 

I 

(2 e 69) 
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Along with t h e  condi t ions i n  (2.65) t h i s  i s  reduced to  the  following f i n a l  

boundary conditions on a chemically n e u t r a l  w a l l  

(2 e 70) 

Now le t  us look a t  t h e  more complex case of boundary conditions on a 

body when . i t s  sur face  is thermochemically d is in tegra ted ,  i.e., when the  m a t -  

e r ia l  of t h e  body e n t e r s  i n t o  a physico-chemical i n t e r a c t i o n  with the gases  

of t h e  boundary layer ,  

For concreteness l e t  us  look a t  t h e  following model of d i s in t eg ra t ion  

which t o  some degree models t h e  d i s in t eg ra t ion  of hea t  sh i e ld  coatings,  €or 

example, t e x t o l i t e .  . .  I’ ~ 

‘ >  

After  heating of a semi- inf ini te  body up t o  a c e r t a i n  characteristic 

temperature T * , l e t  d i s in t eg ra t ion  reac t ions  (pyrolysis)  of a p a r t  of t h e  

products begin t o  take place. As a r e s u l t  of t h i s ,  gases and porous con- 

densed residue (coke residue) are formed, through which these  gases may be 

f i l t e r e d  and transported through the  sur face  t o  t h e  boundary layer .  With 

f u r t h e r  heat ing of t he  body temperatures higher than T*, t he  pyrolysis  

f r o n t  w i l l  be s h i f t e d  in s ide  t h e  body, 

temperature Tw > T*,and heterogeneous reac t ions  may add i t iona l ly  take p lace  

The sur face  of t he  body acquires  a 

on i t  with pyro ly t ic  gases and gases from t h e  boundary l aye r  escaping from 

t h e  body. Furthermore, t he  reac t ions  may occur a l s o  between the  f i l t e r i n g  

gases and the  residue. There w i l l  be two regions i n  t h e  body then. 

f i r s t  region is a carbonized l aye r  with gases f i l t e r i n g  through i t , and  the  

second region is a heated body having the  i n i t i a l  physical  propert ies ,  

The 

Dur- 

ing  nonstat ionary heat ing t h e  surface Q€ t h e  body and t h e  pyrolysis  f r o n t  

w i l l  be s h i f t e d  a t  d i f f e r e n t  ve loc i t i e s .  

which w e  s h a l l  study, both f r o n t s  w i l l  be  s h i f t e d  a t  an i d e n t i c a l  ve loc i ty ,  

Under s t a t iona ry  heating conditsons, 

equal  t o  t h e  d i s in t eg ra t ion  rate of t he  body v around which t h e  flow is 
passing, This ve loc i ty  w i l l  be  a funct ion of xo 
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I 

Therefore, strictly speaking, even for stationary flow conditions the 
flow over the disrupted surface will be nonstationary. 
boundary layer equations in the coordinate system associated with the dis- 

where p(') is the density of the body. 
then be ignored. 
coordinate system remain the same as in the absolute coordinate system 
associated with the body. 

Then in writing the 

integration front as we shall do, terms are added of order a-= vw &, , 
Since -&)d1i-3 , these terms can 

Therefore, the boundary layer equations in this movable 

Of course, here we shall assume that as a result: 
of disintegrating the surface of.the body is sufficiently smooth, i.e., 
aeL i*-F e 

istic length, Re is the Reynolds number. 

- - -- 
Here; :&: is the curvature af 'the - - . -  surface, -- L is -_  the- character- . --- 

In this case a vertical component of the velocity vector appears on 
the wall that is non-zero, the so-called flow. We shall assume in this 

paper that the flow is sufficiently smal1,so that the sufficient conditions 
are not disrupted for validity of the boundary layer equations. Here we 
shall also assume that the distribution of pressure, velocity, temperature 
and concentrations on the outermost boundary of the boundary layer will be 
the same as with streamline flow around a non-disintegrating body. 
conditions for y -+ 00 remain the sameo i.e.9 (2.57), (2,!%), (2.621, 

Then the 

We shall also postulate satisfaction of the condition of attachment 
(2.64). I 

If we look at the general case of a heterogeneous heating of the body, , 
i .  ' then the escape of a component will take place both due to surface heating 
and due to flow through the pores inside the material of the body (4) 

1 
, i.e., 

c 4 )  This case is typical for the thermochemical disintegration of 
' thermoplastics. For example, with heating of textolite, carbon monoxide is 

' 

i 

- formed on the surface both due to heterogeneous heat of the coke residue 
and due to the flow of CO,' which forms as a result of pyrolysis of the 
plastic 
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(2'71) 

where vi is the mean statistical velocity of the i-th component, 
is the density of the mass current of the flowing part.of the i-th component, 
& is the surface density of the formation of the i-th component in the 

>&?4qt:* 

heterogeneous reactions. 
taking into account that for a flowing mass of gas the law of conservation of 
mass is valid, that 

If we sum the conditions in (2.71) we find, by 

(2.72) 

I where 9 "'u"' 
> gration of the body. 

is the mass surface velocity of the thermochemical disinte- 

Then (2.71) can be written as: 

(fF 
I where '5 , is the diffusion flow of the i-th component in the body with 
approach to the surface from the side of the body. I 

I Under stationary conditions,disintegration from the elementary examina- 
tions of the laws of conservation of mass of the components, it will follow 

j that the gases inside the coke layer must be at rest relative to the residue. 

s Then 6? < L = ~ , - - I  N, e In the general case determination of the currents 1 
1 sra is an independent problem, whose solution will depend on the detailed , 

, shall assume the flows $J(f9- /&d ..., Md equal to zero. 

- m- 

model of the thermochemical disintegration of the body, In this paper w e  

7 -  m ? 2 -  If we multiply Equation (2.73) by mk and sum over all com- . 
ponents,we then find the conditions for conservation of the elements on the 
surface 
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where C * ( l )  is the concentration of elements of the body's material with 
approach to the heating front from the side of the body. 
specified in this formulation. 

j 
These numbers are 

Instead of the Conditions (2.73) it is more convenient to use the eondi- 
tions of conservation of elements (2,74) and N - Ne in the solution. 
are conditions of conservation of mass in the independent Nr reactions 

These 

a 

With a specified value of ( ?r Expressions (2.74) and (2.75) give 
exactly N conditions for N concentrations. 

1 

In the case of chemical balance on the surface, Conaitions ( 2 . 7 5 )  must 
, be replaced by Expressions (2.661, ( 2 . 6 7 ) .  Conditions ( 2 . 7 4 )  remain. 

In the specified formulation the temperature on the wall is not given, 
I 

therefore,we must turn our attention to the condition of conservation of 

, energy at the heating front which in approximation of the boundary layer 
1 theory will be [ll] (the index "w" is omitted) 

i 

I 
The asymmetry of condition ( 2 . 7 6 )  is the result of the assumption that 

, 

- ' -  the.radiation9-and no diffusion phenomenon appears in it. 
the material of the streamlined body does not transmit and does not absbrb 

I 
- 

I 

. .  . .  . .. , :: ..,..- 
*- :...:_ 

::. > . . 

. .. . . .. 
' p,. :,. :, 
.. . . . . , 

... ' :  
. .  
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8 -  

I 

Since a part of the body components are in the condensed phase, then 

( 2 . 7 7 )  

where hi 
4 the surface temperature of the body, Ai is the heat of the phase transition 
of the i-th component from the condensed state t o  the gaseous state. 

is the enthalpy of the i-th component in the gaseous state at 

If we use ( 2 . 7 7 ) ,  ( 2 . 2 )  and ( 2 . 7 4 ) ,  Condition ( 2 . 7 6 )  may be written as 

( 2 . 7 8 )  

4 where - .  A is the'total heat of the phase transition. 

'It] is easy td show that under stationary disintegration conditions [12] 

I 

( 2  e 7 9 )  

" I V  1 where 4'" is the heat necessary for heating a unit of mass of the body 
' 

> 

! 
i 

material from the initial temperature T-- inside the body up to the temp- 
erature on the surface by allowing for all the possible pyrolytic reactions 
excluding the phase transitions at the front. 

Finally the condition of conservation of energy.on the surface of a 

' f body which is disintegrating and heated from the surface is written as 
i '  

I 



(2 e 81) 

is  t h e  t o t a l  hea t  necessary f o r  heating a u n i t  of mass of t he  body material 

from the  i n i t i a l  temperature T-w t o  t he  temperature on t h e  surface by allow- 

ing  f o r  t he  absorption of hea t  i n  the  body under a l l  poss ib le  pyro ly t ic  

reac t ions  ( the  t e r m  8") - 8-w)9 i n  a l l  phase t r a n s i t i o n s  ( the  term A ), i n  

a l l  heterogeneous reac t ions  a t  the  f r o n t  up t o  formation of t h e  gas composi- 

t i o n  on the  sur face  equal t o  C 

4 

( i  = 1, ..., N:). i w  

R W e  should make some comment r e l a t i v e  t o  q e I f  t h e  gas on the  boundary 
R l aye r  is  t ransparent ,  then q may be taken from t h e  so lu t ion  t o  the  flow 

problem around a body by a nonviscous gas, taking r ad ia t ion  i n t o  account. 

However, i n  t he  presence of a flow of a foreign gas  and absorption of t h e  rad- 

i a t i o n  i n  i t ,  w e  can show t h a t  q w i l l  d i f f e r  s i g n i f i c a n t l y  from the  r ad ia t ion  

Qe / 

R 

which is  inciden! on the  outermost boundary of t h e  boundary, layer,, i.e. 

(2.82) 

where t h e  value yR is  a complex funct ion of i n t e rac t ion  between the  r ad ia t ion  

and the  flow i n  the  boundary layer .  

t he  problem of flow i n  t h e  boundary l aye r  allowing f o r  .the radiat ion.  

problem is of independent i n t e r e s t  and has  not  been s tudied here.  In  t h i s  

respect  le t  us  mention t h a t  t h e  flows % (i = 1, Nr) and q i n  (2.80) 
a l s o  must be found by allowing f o r  t h e  in t e rac t ion  between t h e  flow and t h e  

r ad ia t ion  f i e l d .  However,we can assume t h a t  with these  values  of t h e  flow 

f o r  which q becomes s i g n i f i c a n t l y  d i f f e r e n t  from q t h e  flows 2 and q 

w i l l  be much less than qR9 and t h i s  w i l l  no t  lead t o  any notable  e r r o r  i n  t h e  

It may be determined only a f t e r  solving 

This 
I 

: v /  

< 

I R 
e s  

> equation of energy balance (2.80). 
determined from System (2.13) - (2.221, then (2.80) w i l l  hold only i n  the  

case i f  t h e  r ad ia t ion  does not  i n t e r a c t  with t h e  flow f i e l d .  

(2,801 is an exact expressiono 

Fina l ly ,  i f  8% (i = 1, ..., N) and q are V' 

Generally 

An unknown funct ion (pv)w e n t e r s  i n  t h e  



condi t ions computed above. 

i n t eg ra t ion  we must, i n  addi t ion  t o  the l a w s  of conservation, add t h e  condi- 

t i o n s  f o r  cont inui ty  of t he  tangent ia l  ve loc i ty  component and temperature. 

The supplemental condi t ion must follow from the  s p e c i f i c  form of t h e  dis in-  

tegra t ion  mechanism. For example, i n  the  case of pure evaporation t h i s  may 

be e i t h e r  t he  condi t ion of balanced evaporation o r  t h e  condi t ion of evapora- 

t i o n  a t  a f i n i t e  rate [13]. In  _ _  t h e  case-of - .  d i s in t eg ra t ion  .. of complex materials I 

t he  missing condi t ion may be taken from experiment i n  t h e  form of a k i n e t i c  

curve, which relates the  d i s in t eg ra t ion  rate and t h e  temperature of t he  sur- 

face  [6],  etc. 

Thereforesin the  problems of thermochemical dig- ' r 

Below we s h a l l  examine i n  grea te r  d e t a i l  t h e  bas i c  formulations of the 

problems. 

§ 3. PROBLEM ON A CHEMICALLY FROZEN FLOW I N  A BOUNDARY 
LAYER OVER AN IMPERMEABLE SURFACE HAVING 

ARBITRARY CATALYTIC CHARACTERISTICS 

I f  t he  flow i n  a boundary l aye r  is frozen,  i .e.,  t he  r eac t ions  t ake  

place so slowly t h a t  they can not t ake  place during the  l i f e  time of the  

l i q u i d  p a r t i c l e  i n  t h e  boundary l aye r ,  w e  can then use Wi (i = 1, *.., N) i n  

a l l  the  d i f fus ion  equations i n  (2.15). 

necess i ty  t h a t  Cie = const when y + w e  

i n  a boundary layer,we must of necess i ty  look a t  t h e  "frozen" flow i n  a non- 

viscous flow over the  body. Furthermore, i t  of ten  makes sense t o  consider 

t h e  "frozen" flow i n  the  boundary l aye r  as a flow which simulates t h e  bal- 

From these  equations i t  w i l l  follow of 

That is  t o  say, f o r  a "frozen" flow 
' 

anced flow i n  it, f o r  ease of solut ion.  I n  f a c t ,  i f  t h e  d i s t r i b u t i o n  of 

concentrat ions (composition) does not  s t rongly inf luence the  t ranspor t  co- ' 

ef f i c i e n t s  , t h e  d i f fe rence  i n  the  chemically balanced flow from the  "frozen" 

flow with heterogeneous balanced reac t ions  on t h e  w a l l  w i l l  cons i s t  of t h e  

f a c t  t h a t  i n  t h i s  lat ter case a l l  t h e  reac t ions  take  p lace  a t  t h e  w a l l ,  and 

i n  a "balanced" flow they are d i s t r ibu ted  along t h e  l aye r ,  which o f t en  does 

not  change the  f i n a l ' r e s u l t  g rea t ly .  We can sometimes rep lace  t h e  equ i l in  
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$ 1  

' j brium flow over a "cold" w a l l  by a frozen flow over an  i d e a l l y  c a t a l y t i c  
f 

w a l l .  

a t  the  outermost boundary of the  boundary l aye r  when x > xo, from which we 
regard the  flow as frozen. 

In  t h i s  case, we must of necess i ty  set C = const  (i = 1, ..., N) i e  

For such a model of t h e  chemical react ions,  i n  t h e  previous equations, 

' we must set Nr = 0 and the  problem of determining t h e  thermal f l u x  and vis- 
cous f r i c t i o n  f o r  x > xo w i l l  be reduced t o ' a  combined so lu t ion  of Equations 

(2.13), (2.141, and t h e  d i f fus ion  equations 

- * ' -  
o r  the  hea t  flux equations (2.18) i n  which we must set.ldi-0 ( i=i, --*,-d _c_ ) e  

-L- - - - ._ - -- 
II The boundary_-conditions - -  on the- outermost - - -  --- boundary ---__-_ of -  the-bgundary l a y e r  w i l l  

be 

when y-v PO 

Under such condi t ions Equations (3*1), (3.2) w i l l  be cons is ten t  with these  

boundary conditions.  

I f  t h e  w a l l  i s  impermeable and is  maintained a t  a temperature Tw(x), 
then boundary condi t ions (2.65) - (2.68) must be s a t i s f i e d  on it;  these  

condi t ions i n  t h e  ease of an  i d e a l l y  c a t a l y t i c  w a l l  w i l l  be reduced t o  (2.65) 

and (2.66) (2,671, Furthermore, we  must g ive  t h e  " i n i t i a l "  condi t ions when 

= xo: 
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which become known a f t e r  solving t h e  problem of the  boundary l aye r  when x < 

$ X0' 

After  solving t h i s  problem, we can f ind  the  d i s t r i b u t i o n  of viscous 

f r i c t i o n  stress along the  body from the  expression' + -  

! 

if we ignore the  inf luence of the  chemical reac t ions  on the  tensor  of t he  
: viscous stresses. 

The t o t a l  convective heat  flux on the  c a t a l y t i c  w a l l  w i l l  be computed 

from Expression (2.21), which - by taking i n t o  account (2.2), (2.65) and 

, (2.19) - w i l l  be ( t h e  index "w" is omitted) 

For a binary  mixture, formed by one reac t ion ,  

i 
..) I .- . 

Accordingly, . _  we f ind  
* 

d . - . .. . .I. . 
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where the thermodiffusion factor a has a value on the order of 0.1 - 1. 
The t o t a l  heat flux will be equal t o  

(3.10) 

I 

From (3.10) it is easy to evaluate the direct contribution to the thermal 

Then k&T/,-<;2X&gO, cal/gram, when Tw = 300°., - 
3 flux of the diffusion thermoeffect. 

' +  the order of 7000 cal/gram. 
Therefore, the direct contribution of the diffusion - thermoeffect to the heat 
flux on the wall w i l l  be significant (on the order of several percents) only 
for a sufficiently hot wall (T 
effect is proportional to the absolute temperature, its influence will be 
more significant in the hot regions of the boundary layer. 
a significant change in the temperature gradients and the diffusion flows, 
but t o  a weak change in them at the wall. Quantitatively this question in 

The heat of dissipation Q for air is on 

-r 

% 20000 - 3000' K) and when a f% 1. Since this W - /25 
This may lead to 

' an ionized boundary layer has yet to be studied. In the absence of reliable 
data on the coefficients of thermal diffusion in ionized gases, it is im- 
possible to obtain a final quantitative answer. If the heat fhux equation. 

T 
1 is solved for the function H then it is necessary t o  convert Expression 
; (3.6) to this function. 

i 

I We have 

L .. ' 

(3.12) 
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. . .. . , . 

. .. .. 

T L e t  us  introduce the  r e l a t i v e  value f o r  the  funct ion H . 

and a l s o  t h e  r e l a t i v e  mass d i f fus ion  cu r ren t s  on the  w a l l  
_ I _ I  - -  - -  -L_ -- 

1 

E / )  I 
. i  a 2-w ( ( @ = d ~  a * #  

&- Gw 13; = 

' Here the  value 
- .  - -  

I 

n 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

is comprised of t h e  heat  which is  released by one gram of the  ex terna l  cur- 

r e n t  having a composition C 

t u r e  of Te t o  the  w a l l  temperature of T 

' ( i  = l, ..., N) with cooling from a tempera- 

i n  the  absence of chemical r eac t ions  
i e  

W 
.and k i n e t i c  energy of a nonviscous flow on the  w a l l .  

Then (3.13) w i l l  be 

- .  

1 '  If we introduce the  funct ion g from (3.14), then the  formula f a r  (7-7) - 
I w i l l  d i f f e r  from (3.17) ( the  second formula) only i n  t h a t  ,%! 'must b e ' r e -  

T' 3 w .  

z> i placed by go 
b 
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In Formula (3.17) let us introduce the total enthalpy of the braking of 
, 

g actions end and the frozen flow begins, we can use (2.2), then 
the oncoming flow (2.37). Since in the cross section x = xOs where the re- 

Then 

. . .. . . , . 

. . . - . . . 

where 

(3.20) 
1 1  I ,  L I t  a ,  

/ /  

$ 1  1 I I k I &  I .  

% If we take advantage of the concept'of the effective diffusion coefficients 
introduced for the chemically frozen flows in multi-component boundary layers 

i 
. in References 19, 141%. cdmd introduce I ?he .qelative.concentrations 

I 

(3.21) 

P -  
where the exponents .Xi must be,det?rqin,ed from the' actual solution to the 
problem, and the effective diffusion coefficients .& 
pendent of the exponents 'a 

I 1  " (  ' /  * I  

are virtually inde- 
and are determined by the boundary values of the 

concentrations and by the binary diffusion coefficieflp of the components. 

51 
1 I / [ ; !  ) ' * *  

L L i 



(3.23) 
i 

where 

.e G -  n (3.24) 

Formulas (3.23) are exact s t r u c t u r a l  formulas f o r  t h e  t o t a l  s p e c i f i c  convec- 

t i v e  heat  f l u x  which genera l ize  t h e  known s t r u c t u r a l  formulas of Fay and 

Riddel [14] and Lees [15] t o  the  case of nonuniform di f fus ion  and thermodif- , 

fusion proper t ies  of t h e  components, and t o  the  nonuniformity of t h e i r  

s p e c i f i c  heats .  

hea t s  and the  h e a t s  of reac t ions  on temperature. 

They a l s o  take i n t o  account t h e  dependence of t h e  s p e c i f i c  

The formulas i n  (3.23) are v a l i d  both for an i d e a l l y  c a t a l y t i c  w a l l  

and f o r  a w a l l  wi th  a f i n i t e  c a t a l y t i c  character .  

concentrat ions of t he  r eac t ion  products on the  w a l l  C 

must be known from solving the  problem with k i n e t i c  boundary condi t ions 

(2.68). 

another form 

I n  t h e  latter case the  

(i = I, O . . ) I  Nr) i w  
' 

I f  we use t h e  condi t ions i n  (2.68), Formula.(3.13) can be assigned 

. . . . ~. . _.1 

However Formula (3.25) i s  less clear than (3.23). 

5 4 ,  PROBLEM ON A CHENICALLY FROZEN FLOW I N  A BOUNDARY 
LAYER OVER A THERMOCHEMICALLY DISINTEGRATING SURFACE 

POSSESSING AN ARBITRARY CATALYTIC CHARACTER 

Here w e  look a t  t h e  same scheme of chemical reac t ions  in t h e  flow as i n  

t h e  previous sec t ion .  Then t h i s  problem w i l l  be reduced to  t h e  combined 



so lu t ion  of t h e  system of Equations (2.13), (2.14), (3.1). and (3.2) with 

the  boundary and " i n i t i a l "  conditions (3.3), (2.741, (2.75) (2.80) (3.4). 

After  solving t h i s  problem, we f ind  the  viscous f r i c t i o n  stress from 

Formula (3.5). 

t ranspor t  v e l o c i t y  from t h e  surface (pa), and t h e  temperature of the sur face  

Instead of t he  thermal f lux ,  here  we must f i n d  the  mass 

TW' 

This hea t  f l u x  on the  w a l l  4, which appears i n  (2.80), according t o  t h e  

d e f i n i t i o n  of (2.19) and t h e  boundary conditions i n  (2,74) may be represented 

i n  t h e  form ( the  index "w" i s  dropped) 

I f  Expressions (4.1) and (4.2) are subs t i tu ted  i n  (2.80),we f i n d  

- -7--- - -  >-- . f where-- i -  

I 
I 

-- 

! (4.3) 
I 

- - _  - _ .  . .  
1 

It is i n t e r e s t i n g  t o  note  t h a t  allowing f o r  t he  d i f fus ion  thermal e f f e c t  a t  

the  d i s in t eg ra t ion  f r o n t  w i l l  f i n a l l y  lead t o  a s l i g h t  known change i n  t h e  

reac t ion  h e a t s  and t h e  hea t s  of t he  phase t r ans i t i ons ,  i*e .9  i f  we introduce 

the  concept of e f f e c t i v e  reac t ion  hea t s  Qi and t h e  e f f e c t i v e  heat  of  the  

I 

t i  

' 

phase'' t r a n s i t i o n  A l p  which w i l l  depend i n  a known manner on t h e  thermo- t s  

j 
d i f fus ion  p rope r t i e s  of t he  components and t h e i r  concentrat ions on t h e  w a l l ,  

i 

. _  
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t .- 
I 

then the  energy balance equation on the w a l l ,  by allowing f o r  the d i f fus ion  

thermal e f f e c t ,  w i l l  be w r i t t e n  i n  a form which agrees  with the  wr i t ing  of 

t h i s  expression without allowing f o r  the  d i f fus ion  thermal e f f ec t .  

(4.2) f o r  known flows ,% . ( i  = 1, ..., N ) and composition of the  gases on 

: the  w a l l  g ives  the  r e l a t ionsh ip  between the  temperature of the  w a l l  Tw and 

the  mass t ranspor t  v e l o c i t y  (pv), from the  wall. 
t he  problem i t  p a r t i c i p a t e s  as one of t h e  boundary condi t ions along with 

the  condi t ions i n  (2.74), (2.75). However, i f  we make c e r t a i n  assumptions 

relative t o  the  cu r ren t s  OZ. ( i  = I, 
w a l l  as a funct ion of t he  flow, following from the  so lu t ions  t o  t h e  ind iv i -  

I dual  p a r t i c u l a r  problems, then from (4.2) we can f i n d  an e f f e c t i v e  s t r u c t u r a l  

expression f o r  the  mass t ranspor t  ve loc i ty .  

Expression 

, r 

In the  process of solving 

T 
e .  , N) and the  de r iva t ive  aH /ay on t h e  

! 

: and the  concept of c o e f f i c i e n t s  of mass exchange 

L e t  us assume t h a t  these  c o e f f j c i e n t s  of the  hea t  and mass exchange can be 

written i n  the  form 

Then by using these  representa t ions ,  Expression (4.2) can be solved f o r  

(pu), and can be w r i t t e n  i n  two equivalent forms j 

i 

54 



The second expression is more convenient, when the ratios of the mass ex- 
3 change coefficients to the coefficient %T vary weakly from the conditions 

( 

: of the problem. 
1 
I 

3 

In (4.7) and (4.8) let us introduce the total enthalpy of deceleration 
I of the nonviscous flow, according to (3.18). Then 

' 
' 1  

When the linear approximation ( 4 . 6 )  is valid for the coefficients of 
heat and mass exchange, the values yHT and y Nr) do not de- 
pend on (pu), or on the blast 
Nr) will depend on the blast, but more weakly than 
heat and mass exchange themselves. 
lll,Nr) and yR9 Expressions (4.9), (4.10) are exact structural formulas for 
the mass transport velocity of a material from the body surface during 
thermochemical stationary disintegration when the absorption and transmission 
of the radiation in the body may be ignored. Although from Formulas (4.9) ~ 

and (4.10) it is impossible to determine the mass transport velocity prior I 

to the actual solving of the problem, 

(i = 1, i (5) For large blasts yHT and yi (i = 1, 
the coefficients of 

In any case for known yHT and yi (i = 1, 

nevertheless they are useful for 
evaluating (pv), In fact, if for the numerical values of yRo y:Tg y2 

H we 

2 1 ' 5 )  POP sufficiently small flows the linear approximation (4.6) is 
' ,  valid. 

I 
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I 0 ( i  = 1, ..., Nr) ,  CHT 

from solving t h e  simpler problems, then with a spec i f ied  pressure and com- 

pos i t ion  on the  w a l l . ,  which can be determined approximately, Formulas (4.9) 
and (4.10) w i l l  g ive a value of (pv), as a funct ion of t h e  temperature a t  

t h e  f r o n t  Tw. 

of e f f e c t i v e  d i s in t eg ra t ion  enthalpy which w i l l  be introduced i n  t h e  next 

Ci ( i  = 1, . . o ,  N ) ,  w e  take those values  obtained 

’, 

I n  f a c t ,  however, t o  compute (pu),, w e  o f t e n  use the  concept 

’ sect ion.  

i § 5. DETERMINATION OF THE EFFECTIVE ENTHALPY OF DISINTEGU- 
TION AND ITS EXACT STRUCTURAL FORMULA FOR A CHEMICALLY 

FROZEN FLOW I N  A BOUNDARY LAYER 

t 

L e t  us determine fhe  e f f e c t i v e  enthalpy of d i s in t eg ra t ion  Hef i n  t h e  i 

’ following manner 

i.e., Hef is equal t o  t h e  r a t i o  of t h e  t o t a l  convective hea t  f l u x  t o  t h e  

nondis integrat ing sur face ,  having t h e  same temperature and shape as t h e  

d i s in t eg ra t ing  sur face  t o  the  mass t ranspor t  velocity.* 

In  (3.19) l e t  us  introduce the  c o e f f i c i e n t s  (4.4) and (4.5). Then 

The symbol ( 0 )  over t h e  brackets  i nd ica t e s  t h a t  t he  expression must be  come 

puted f o r  t h e  mixture of gases forming with flow around the  body without 

allowing f o r  i ts d i s in t eg ra t ion ,  i .e.,  t h e  sum from 1 t o  Nr; f o r  example, 

i n  (4.9) o r  (4.10) t he re  w i l l  be contained terms which correspond t o  t h e  

products of burning of the  material of t he  body, which w i l l  be absent  i n  

, 

* Trans la to r*s  Note: There is  apparent ly  a mistake in  the o r i g i n a l  text 
as t h e  meaning is no t  cleare 
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l 

a t h e  sum i n  Expression (5.2). Thus, the  heat  f l u x  (5.2) f o r  t h i s  problem of 
9 

d i s i n t e g r a t i o n  is an imaginary value. 
we f i n d  

Allowing f o r  ( 4 . 9 ) ,  (4.10) and' (5,219, 

.. _ _  

, -- 
i 

With in t ense  d i s in t eg ra t ion ,  when the  blast is 80 g r e a t  t h a t  we  can ignore 
I 



t h e  convective and d i f fus ion  hea t  t ranspor t s (6) ,  from (4.2) w e  f i n d  

where t h e  value yR is  given by approximation' (2.82), i ,e.,  equal. t o  f 

and is  t h e  hea t  of t he  r ad ia t ion  energy, absorbed per  u n i t  of mass of t h e  

flowing material, of t h e  d i s in t eg ra t ing  surface.  L e t  us  call  t h i s  the  effec- 

tive hea t  of absorption of t he  r ad ia t ion  energy wi th  flow. t Then with in tense  

d i s in t eg ra t ion  

The quant i ty  @'-$&Tq is t h e  r ad ia t ion  f l u x  inc ident  

(5.10) 

on t h e  w a l l  a f t e r  

subt rac t ion  of the  r e f l ec t ed  r ad ia t ion  f l u x  from t h e  w a l l  without allowing 

f o r  i t s  absorpt ion i n  t h e  boundary layer .  

Formula (5.10) contains  two unknown q u a n t i t i e s  Tw and y "heir deter-  R' 
mination is a fundamental problem both i n  theory and experiment. 

§ 6, PROBLEM ON A CHEMICALLY BALANCED FLOG I N  A BOUNDARY 
LAYER OVER A NONDISINTEGRATING STJRFACE HAVING IDEAL 

CATALYTIC CHARACTERISTICS 

This problem can be  reduced t o  j o i n t l y  solving Equations (2,13), ( 2 . 1 4 ) ~  

'6' I n  the  presence of r ad ia t ion  t h e  l a w  of decrease i n  t h e  convective 
and d i f fus ion  hea t  - f luxes  with flow has  not  ye t  been s tudied,  but  from 'the 
general  arguments i t  follows t h a t  with a s u f f i c i e n t l y  l a r g e  flow these 
f luxes  can sometimes be ignored i n  comparison w i t h  t he  r ad ia t ion  fluxes qw 
reaching the wall. 

. .. - ) .  . . . . .. ... - ._ .. 
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_ I  . 

(2.23), (2.30'), (2,46), (2.42') with t h e  boundary condi t ions and i n i t i a l '  

condi t ions (2.57), (2.58) , (2.63), (2.64) , (2.65), (2.66) (2.67), (3.4). 

In the  case of a chemical balance i n  the  flow f o r  t h e  condi t ions of 

balance (2.66), (2.67) w e  can consider t h e  exis tence of Nr i n t e g r a l s  of t h e  

bas i c  system of Equations (2.13) - (2.22) of the  boundary layer .  These in- 

t e g r a l s  can be used t o  e l imina te  from t h e  energy equation (2.41) o r  (2.42) 
t he  Nr d i f fus ion  f luxes  ,g[! ' (i = 1, * .  . , Nr) and Nr de r iva t ives  of t h e  con- -=, - 

' cen t r a t ions  of p q  (i = 1, N ) r eac t ion  products. For t h i s  l e t  us  

, represent  Conditions (2.66), (2.67) by t h e  molar concentrat ions 
I r 

j The Saha condi t ions (2.67) are a p a r t i c u l a r  form of the  Guldberg-Waage con- 

d i t i o n s  (2.66). Thereforey(6.1) w i l l  include a l l  Conditions (2.66) and 

.(2.67). I f  we s u b s t i t u t e  t h e  so lu t ion  i n t o  Expression (6.1), they can be 

' transformed i n t o  i d e n t i t i e s .  They can therefore  be d i f f e ren t i a t ed .  If we 

'. t ake  t h e  logarithm of (6.1) and then formulate the  grad ien t  and the i soba r i c  

equations of Van't 110ff'~) f o r  each of the reac t ions  ( 2 , l )  

59 



4 -  

I f  we s u b s t i t u t e  Vxi here from ( 2 . 4 4 ' )  and assume t h a t  t he  charge in 
the  r eac t ions  is  conserved, i.e., 

Then 

i 
* !  

I 

' L e t  us int roduce from the  d e f i n i t i o n s  i n  ( 2 . 2 3 )  t he  d i f fus ion  f l u x e s  of ele- 

I m a t s  
* 
'(d'=Nt+d..7 h/ /  ins tead  of the  d i f fus ion  f l u x e s  of the  base com- 

p o n e n t s 7  (i,-= N t + i ,  .../ n / )  e 

t 

satis- We make t h i s  subs t i t u t ion , s ince  the  f luxes  2." A ( ~ = ~ c L f ~ - . - ~  

f y  the  homogeneous equation(*) (2,23) 
w a l l  they s a t i s f y  t h e  zero boundary conditions (2.65). 
expect t h a t  they w i l l  d i f f e r  l i t t l e  i n  t h i s  case from zero i n  the  f lux.  

varies -@we smoothly i n  comparison with the- f luxes -  - ?f8*h+h _I * *  -~-Cr/l  

and i n  the  ease  of a nondis integrat ing 

Therefore, we  can 

When -- 
t he  mass (elements) comes from the w a l l ,  we  must expect t h a t a  -*- (j=&+$..> - -  N)  - _  _ _ _ _  -_ - _  - - - - _ _  - 

(8) In  t h i s  case our arguments are not  confined t o  the  framework of 
the  approximate boundary l a y e r  theory but  have a general  charac te r ,  

~ - -  
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since the  chemical react ions d i r e c t l y  influence these latter. 

-q(6"e+d--, 4 from (6.4) with the a id  of (6.5) w e  f i nd  the following 

l i n e a r  a lgebraic  system f o r  the d i f fus ion  f luxes  of the components of t he  

I f  we drop 

i 

, This  system can be wr i t ten  more b r i e f l y  
! 

- / 31 

( 9  1 L e t  us show t h a t  the  matrix [I ff[,d 
FOK t h i s  l e t  us tfansform the f i r s t  term i n  the expression Aike 

( {/i..d..., /c/u is  symmetrical 

j 

I 

This proof agrees with t h a t  i n  Reference 1161 where the  e f f e c t i v e  
coe f f i c i en t  of thermal conductivity w a s  computed i n  a s t a t iona ry  chemically 
reac t ing  mixture of gases. 

1 
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. . . ~ .  - . . , . ._ . .. . .1 . 

. Hence$t i s  immediately clear that 
i 

We can find Aii 

Thus, there are altogether 

_ _  
l/2Nr(Nr 9 1) different coeff ic ients  rather than /32 
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2 N . r 
diffusion fluxes of the reaction products 

From the system of consistent linear equations ( 6 . 6 )  we can find Nr 

The remaining fluxes are found from the equations in (6.5), the solution of ._ 

,I""--- which gives , - -  - 

5 

-- .... - . . . .  -. ................. 

This heat flux along the ylyaxis w i l l  

. b .  . - .  . . . . . . . .  .- 
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(6.14) /33 

i 

1 The c o e f f i c i e n t  A is expressed through the  expansion c o e f f i c i e n t s  i n  
' the  Sonin polynomial and is f i n a l l y  expressed in t h e  form of r a t i o  of deter-  

minants, whose elements are i n t e g r a l s  of t h e  paired c o l l i s i o n s  [ 8 ] .  

i f  w e  Pgnore t h e  d i f fus ion  thermoeffect,  the cont r ibu t ion  of the  d i f fus ion  

f luxes  of the  elements t o  the  t o t a l  heat  f l u x  may be  s ign i f i can t .  

;gr = 0 (j = Nr 4- lo 

Even 
, ' 

Even when 

a 'N) , which w i l l  be t h e  case i n  a. s t a t iona ry  ehemi- , 

I 
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I 

. c a l l y  reac t ing  mixture of gases o r  i n  a mixture with homogeneous coe f f i c i en t s  

of d i f fus ion  with no t ranspor t  of the  material from t h e  boundaries, Expression 

(6.13) w i l l  genera l ize  t o  the  known expression of t he  t o t a l  hea t  f l u x  given 

i n  Reference [4] f o r  the  case of allowing f o r  t he  d i f fus ion  thermoeffect. I f  9 

we use Expression (6.13) the  right-hand s i d e  of t he  energy equation (2.41) 
can be represented only through the  temperature and d i f fus ion  f luxes  of the  

P 

i 

' elements. 

W e  can prove the  following argument. If the  c o e f f i c i e n t s  of binary 

, d i f fus ion  are i d e n t i c a l  f o r  a l l  components and t h e  problem is  solved under 
1 boundary condi t ions (2.65) then 

(6.16) " 

1 .  

r 
i '  
t 

The t o t a l  hea t  f l u x  i n  the  d i r e c t i o n  of the  y t ax i s  can be represented 

' in- the  form 
* 

i 

I (6.17) 

' 
Then from the  preceding argument and (6.17) i t  follows t h a t  i f  the  coef f i -  

, c i e n t s  of b inary  d i f fus ion  are i d e n t i c a l  f o r  a l l  components and the  problem 

~ i s  solved f o r  boundary condi t ions (2.65), then the  expression f o r  t h e  con- 

vec t ive  heat  f l u x  i n  the  d i r e c t i o n  of the  y-axis in t he  boundary l a y e r  

agrees  with the  respec t ive  expression i n  the  s t a t i o n a r y  chemically r eac t ing  

mixture of gases. 
1 

In  order  to  f i n a l l y  write Equation (2.41) i n  terms of t h e  temperature 

f o r  a chemically balanced boundary l a y e r s i t  is necessary t h a t  t h e  deriva- 

tives of the  funct ion H be expressed i n  terns of t h e  respec t ive  de r iva t ives  

of t he  temperature, We have 
; 
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(6.18) ' 

From this expression it is clear that in turn it is necessary to express the 
partial derivatives of the concentrations Ci ( i = 1, ..., Nr) of the re- 
action products in terms of the temperature derivatives. 
diffusion fluxes. $ 
pressions (2.44) and (2146), with the aid of (6.5) 

If we drop the 
(j = Nr + 1, ..., N) from the Stefan - Maxwell Ex- 3 

I where 

. .  
I ... 

<, . 
.". . - . . . . . ,  
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For now let us compute the intermediate values using (6.10) 

. -  
I :  



. . . . . . 
i 

i , .  . 

- 1  

. - . 
i 

, .  

where 

(6.27) 

(6.28) 

, J We have expressed VCi (i = 1, e e , Nr) in terms of VT, VP and 

(j = 1, o . 0 9  Nr>. 
( i  = 1, 

However, we can find the equivalent expression for VCi 

In facr; with the spec i f i ed  Nr) i n  terms of VT, VI? and C 4 * .  
- J - 

f i e l d  'of element concentrations C * (j = Nr 9 1, e i N) the composition of 3 

68 



I 

- 1 t h e  gas  must b e  found from the  so lu t ion  t o  the transcendentdl system Of 

equations 

where 
I 

. . . . . . . . . .  . . . .- 
I 

... ~ .. . ^  - . . . . . . . .  

, A  

p 
I .  

. I  

(6.29) 
. .  

j If we  take  t h e  logarithm of the  second system (6.29) and formulate the--gradienjs 

e we f i n d  

__ 

: I f  we e l iminate  Vc (i = 1, 

first system (6.29),;we f ind  the  cons is ten t  system f o r  determining VC, (i = 

N) .from these  equations with t h e  a i d  of t h e  
3 

Nr 1 : 1, 0 . 0 ,  

I 

I 

f where 
. ........... -.- .... . '  . .  ...... . .  . . . . . . .  , - -  

B i K :  El 

,'(L(ipKj 

, '  
' .  . ' 

-. .- ._ 

- 136 
3 
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f 

I *  
From t he  system of cons i s t en t  l i n e a r  equations ( 6 . 3 2 )  we f ind  Nr g rad ien ts  

Vq (i = 1, .*., Nr) i n  t he  form 
L- -- I .e--- 

. - -  

I ' i  .a - 
I I 

$1" 
i 

I .  
3ij = -$ - 9Cun fi=.f,..,, d%)* 

- ~ -. - - - -  _ _ .  ---J -- 
I- The gradien ts  of t h e  remaining concentrat ions can be found from t h e  first 

system of  equations ( 6 . 2 9 )  

. .  

* -  

I .  

I .  
i '  
I ' ' a  

, m .  . . . . . . . . . .  
* .  . . . . . . . . . . .  

J 

, I  
I 

~ 

1 
' 

, I  

Formulas ( 6 . 3 4 )  and ( 6 . 3 5 )  d i f f e r  from the  respec t ive  formulas of t h e  theory 

of thermodynamic computation of a chemically reac t ing  mixture of gases f o r  

specif ied P and T, i n  t h a t  here  we take i n t o  account t h e  change in t h e  ele- 

mentary chemical compositio?.and i t s  inf luence on t h e  composition of the  gas,  
........ - __ - - -  
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-L ___ - - - -- - 

- -r-i.e., h e r e  we look a t  the  so-called open thermodynamic system, when along- 

: with the  P and T determining parameters t h e r e , a r e  s t i l l  t h e  Ne parameters 

'Using __ ._ _- t he -So lu t iod  _-_+ ._ . (6.34), we- f i n d  .. 

1 iwhere 
. - .-- 

, .  . . . .  . . .  . . . I 

0 QA . . .  Gbk 

( 6  36) 

, 

- 
.__ _-__ - ._I__ - 1 1 -  

Using (6.14) and (6.38), t h e  energy equation (2.41) f o r  a chemically balanced ! 
'7 
' boundary l aye r  may be wr i t t en  i n  terms of the  temperature. However,for 

1 I '  convenience i n  the  future,we r e t a i n  the  convective operator  i n  Equation 

I (2.41) without change, but  convert t he  right-hand s i d e  . 

i 

{ I  

1 ___- __ -_ 
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* The energy equation ( 2 . 4 2 ) ,  wri t t en  i n  terms of t h e  enthalpy, w i l l  be 

where the  temperature gradient  is r e l a t e d  t o  the  enthalpy gradient  by 

Expression ( 6 . 3 8 ) .  
I 
i 

After  solving the  above problem,the f r i c t ion .  is  found from Expression 
I 

i ( 3 . 5 ) .  The t o t a l  convective hea t  f l u x  through the  w a l l ,  according t o  (6.17), 

i .  (6.15), (2.65), ( 6 . 3 2 )  w i l l  be equal t o  ( the  index "w" is  omitted) 

i 
j where g is the  r e l a t i v e  t o t a l  enthalpy 

1 

I e= H c - H w j  

t 

I f-f- H w  7 

I The t r a n s p o r t ' c o e f f i c i e n t  of the  t o t a l  enthalpy (coef f ic ien t  of hea t  
! i 

t r ans fe r )  then w i l l  be 

! 

J 
i .  , 

" ._ . - . I .  . .. ." 7 :  
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? ~ . .  .... 

§ 7. PROBLEM ON A CHEMICALLY BALANCED FLOW I N  A BOUNDARY 

IDEAL CATALYTIC CHARACTER 
LAYER OVER A DISINTEGRATING SURFACE POSSESSING AN 

In  t h i s  case t h e  bas i c  system of equations w i l l  be the  same as i n  the  

preceding sect ion.  

boundary l aye r  w i l l  be a l s o  retained as before. 

of attachment, Conditions (2.74), (2.66), (2.67) and Condition (4.2), must 

hold. 

The boundary conditions a t  the  outermost boundary of t he  

On the  w a l l  t he  condi t ions 

I n  t h e  case of balanced conditions on the  w a l l ,  the d i f fus ion  f luxes  on 

' i t  may be taken from t h e  expressions i n  (6.10). 

; rewr i t ten  as 
Then Condition (4.2) is - /38 

t - 
I n  t h e  process of reaching a solut ion,  Condition (7.1) o r  (7.2) must I 

' p a r t i c i p a t e  as one of t h e  boundary conditions,  
i 
1 
i t o  represent  the  c o e f f i c i e n t  of hea t  t ranspor t  i n  t he  form 

I 

However, i f  it is poss ib le  

t 

(7.3) i 

where CHo is t h e  c o e f f i c i e n t  of heat  t ranspor t  i n  t h e  absence of a b l a s t ,  
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e f f e c t i v e  enthalpy of d i s in t eg ra t ion  i n  a chemically balanced flow i n  

boundary l aye r  and chemically balanced r eac t ions  on t h e  w a l l  w i l l  be  

It is i n t e r e s t i n g  t o  peruse and follow the  d i f fe rence  i n  the  va lues  of Hef 

given by Formulas (5.3) and (7.5), which were obtained with only one d i f f e r -  

& ence: Fomula (5.3) is  f o r  a chemically frozen flow ins ide  t h e  boundary 
I 

l aye r  and Formula (7.5) is  f o r  a balanced flow. 
, ?  

§ 8 .  DERIVATION OF THE SYSTEM OF INTEGRO-DIFFERENTIAL 
EQUATIONS EQUIVALENT TO THE ORIGINAL SYSTEM OF 

1 
1 
I BOUNDARY LAYER DIFFERENTIAL EQUATIONS 
1 

I n  t h i s  sec t ion  we s h a l l  der ive  a system o f , i n t e g r o - d i f f e r e n t i a l  equa-.,- 

I t i o n s  of parabol ic  type, equivalent  t o  the  o r i g i n a l  system of boundary 

i l aye r  equations (2.13) - (2.22). 

i s h a l l  develop a method of successive approximations t o  obta in  p rec i se  soh- 
' t i o n s  t o  a l l  t he  problems formulated i n  the  preceding sect ions.  On the 

j b a s i s  of t h i s  method, we can a l s o  obta in  approximate so lu t ions  ( the  f i r s t  
' 

two approximations may be computed ana ly t i ca l ly ) .  

On the  b a s i s  of t h i s  system i n  5 10 w e  
' 

I 

t 

b 

I 
. - - - - - 

I 
L e t  us int roduce t h e  flow- function-$\(x, y)-in-the usual  manner- - __ __ - -- ---_. L--- - -. I- 

I 
I 

i " .  
' ) I  where the  primed values  denote the  redesignated va r i ab le s  which appear i n  
' t h e  System (2.13) 

r l  

I 
+, The equation 
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of cont inui ty  (2,13) is s a t i s f i e d  iden t i ca l ly ,  and from 
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t '  

I 

' 

: 

7 

(2.14) we obtain a certain differential equation for the function JI. 
us transform the momentum equation of thus obtained (2.14) for the flow 
function Jl(x', y') using new independent variables 

Let 

. ____  - 

and a new unknown function f(x, n) 

1 where 6(x) is still an arbitrary function. Then in these variables Equation 
i (2.14) will be 

.. . 

where 

! 7 

13q . I  It is natural to also write Equation (8,4) in terms of the variables i 
i .  
1 
i 

I 
i 

(8.6) ' 3  

I 

i in which it assumes a simpler form 

1 
I 

' 1 If we set 6(S) m :&: then Equation (8.7) will be written in the Dorodnit- 
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I S  

' syn - Stefanov variables in the Lees form 1151. 
Now let us integrate Equation (8.7) with respect to the coordinate n, 

t3U 
from n to a, and use the asymptotic function U(S,  n) and f(s, n) at infinity 
[SI -0 , f(s, n) -+ n - $(S), (1 - u)f -+ 0 when n -t 03, then we find 

_ -  - -  the following integro-differential equation 

! 

. 

i The equations of the component diffusion (2,15) can each be transformed 
; respectively t o  the independent variables 
1 
I 
; 
I 

% 

I 

,:. 
1 I .  . . .  

. P  
I 

i 
and to the unknown functions (the primed values denote again the redesignated 
values which appear in (2.15) 

L 
'., I 

! 

' 76 

. ." 



where cS1(x), c!j2(x)' ..., 6 (x) are arbitrary functions. 
ih (2.15) along with Expressions (2.44) and (2.46) assume the following form 

Then the equations N 

-... . . 
i 

_.. _ , -  -. - I 

- -  
i 

I 
i 

For the case of a mixture with identical coefficients of resistance a Ex- 
gressions (8.14) and (8.14' 1 assume 

ij 
reapactively, the form 
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. . . .  
f - __. _ _ _ _ _  . . . . . . . .  . . . . . . . . . .  

. . . . . . . . . . . . .  . .  . . . .  !. j ..._ 

I 
I 
! 

:I , 

? i  

! 

i o r  .." 

. . .  . . . .  

(8.14"") 

i 
I 

L e t  us no te  t h a t  here  we do not  assume t h a t  the  molecular weights of the  

components, t h e i r  c o e f f i c i e n t s  of thermal d i f fus ion  o r  charges are equal. 
I 
i 

1 
J , In  order  t o  give t o  Expressions (8.14") the  form of the  Fick l a w s ,  
i ' 

1 of a molar o r  numerical ve loc i ty  V* 

a form similar t o  Expressions (8.14'"), we must introduce the  concept - 
f 
1 I 

,-.- .. . . .  _.- 
7 

- 
6 

I 
8 

and molar d i f fus ion  f luxes  

I 
I 

Then (8.14") w i l l  be 
- ,  

i 
i 

..... - . . . . .  -. ............ -.--. 

L I 3 i If -we--introduce a new Schmidt number I . -- - . - - _  



; t... 
, I  
* then the expressions i n  (8.14") w i l l  assume the  form of the  Fick laws similar 

t o  the  expressions i n  (8.14'"). < 

4 - -  
L e t  us r e t u r n  t o  t h e  general  case. It is, n a t u r a l  t o  write Equations 

i 
(8.13) i n  the  va r i ab le s  t 

1 

(8.15) 

1 
1 i n  which they assume the  simpler form 
5 

I 

> 
At t he  outermost boundary of t he  boundary l aye r  we s h a l l  have 

- s-l---. 
I 

: (&.17) ' 

Then by allowing f o r  (8.17) the  equations i n  (8.16) can be r ewr i t t en  as i 

I 

I 
j 

' 
i 

L e t  us i n t e g r a t e  Equation (8.18) with respec t  t o  ni from PI. t o  Q) and use 

the aeymptotic funct ion Cie(S) - Ci(S, nt)9 f i  (S, ni) a t  i n f i n i t y  
1 

' 

1 

1 
1 Qe(+ CC'(S, K), j$ (s, N)  .- . ,. ..,* - p[s/ n2) -P k q -  W S ) ,  m- Wfi.-?O fori, PZJCT 90 

- ,  

QX-4, W,l ld) -+$ @a 
- - .I - -_  _ _ . C  - _ - - -  -__. 

? I  

. s  ) I  - 
* 
i then w e  f ind  t h e  following system of integro-dif  E e r e n t i a l  equat ions 
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. . ' .  . 
I 

- -  .. . .,. ._  .-- 1 - ~ . .. . ..  . . .  
. !  
.: i- . . . . .. _...- . ~ . ,- . . .  

I 

I 
2 1  

I 

where 
~ _.. . .  .- - .... . - - . -:- 

. .  

If we substitute the expressions for the diffusion fluxes (8.19) into Ex- 
pression (8.14) and introduce into the i-th relationship only the function 
$i and the independent variable ni by using the identities * 

where 
- .- -. - - - . _. ... . .. , I. .. 1 
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r '  

j When all the numbers S.. are identical (the resistance coefficients are 
identical), then from (8.21) we obtain 

IJ. 

! 
\ 

I 

Now let us transform the diffusion equations of the elements (2.23) 
I into independent variables 1 

.. . . - . 

(8 . 24)  

t 

where dN +l(x)p 0 . . 9  dN(x) are still unknown functions. Then the equations , 
i r 
i in (2.23) will become 
I 
i 

I 
. j  - 
, i  In the variables 
i 
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I 

.. . 

. the equations in (8.26) can be written more simply 

L e t  us integrate these equations with respect to n from n 
j j 

to Q) and 

e use the asymptotic formulas 

i 

I 
I 

then we find the system of integro-differential equations 
- 

I 
- 

~ - - --__ 

If we rewrite these equations in new independent variables 

they then assume the following form 
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Here d*(~) is an arbitrary differential function of X.  

Finally let  us proceed to integration of the energy equation ( 2 . 4 2 ) .  
We can f irst  transform it into new independent variables ' 

( 8 . 3 3 )  

i and to the unknown functions. 

where dH(x) i s  

f o m  

sti l l  an arbitrary function. It then assumes the following 



i .  
J 

In the variables 

. . . . . . 

1 '  

i 

(8.36) 

th is  equation w i l l  be 

! 

' L e t  us integrate Equation (8 .37)  by nH from nH to 03 and use the asymptotic 

; expressions 

where 

(8 .39)  
L 



i f  Thus, we have obtained, instead of a system of d i f f e r e n t i a l  equations 

of a multi-component boundary layer  with chemical reac t ions  and ion iza t ion  

reac t ions  (2.13) - (2.22), an equivalent system of in tegro-d i f fe ren t ia l  

equations (8.8), (8.19), (8.21), (8.28), (8.38). 

§ 9. INTEGRAL KARMAN EXPRESSIONS FOR A MULTI-COMPONENT 
BOUNDARY LAYER WITH REACTIONS 

\ 

I 

I f  i n  Equations (8.81, (8.191, (8.,21), (8.8), (8.38) we i d e n t i f y  a l l  
func t ions  6(S) with thicknesses of the respect ive boundary l aye r s  and set  

q = 0, w e  then obta in  i n t e g r a l  Karman expressions i n  terms of the  variables 
S, n as an approximation of a boundary l aye r  of f i n i t e  thickness 



The expressions in (9.1) are integral Karman expressions for a multi- 
component boundary layer with chemical reactions in the Dorodnitsyn - Ste- 
fanov variables in Lees form. 
develop the familiar approximate method for solving a multi-component bound- 
ary layer with chemical reactions, i.e., the Karman - Bohlhausen method 
[4](10). 
this problem based on use of the method of successive approximations. 

On the basis of these expressions we can 

However,in the next section,we shall develop a method for solving 

§ 10. METHOD OF SUCCESSIVE APPROXIMATIONS FOR SOLVING 
LAMINAR MULTI-COMPONENT BOUNDARY LAYER EQUATIONS WITH 

CHEMICAL REACTIONS AND WITH IONIZATION REACTIONS 

The problems formulated in sections 3,  4, 6 ,  7 for the theory of a 
laminar multi-component boundary layer with chemical reactions and ioniza- 
tion reactions are too complicated for obtaining an approximate and numerical 
solution in the general case. In the past these problems were solved numeri- 
cally with a series of simplified assumptions, i.e., by the method of finite 
differences. However, this method, used in the problems studied here, leads 
to awkward computations that are created by the method itself rather than by 
the physical essence of the problem. 
method of successive approximations (see § 1) for these problems. The ad- 
vantage of this method consists of the simplicity for arriving at solutions 
using an electronic computer in the general case and in the possibility of 
obtaining approximate solutions (first and second approximations may be com- 
puted analytically), the accuracy of which may be estimated by this same 
method using an electronic computer for computing the successive approxi- 
mations. 

In this section we shall develop a 

Let us proceed to a discussion of this method. 

.Wecan rewrite - - .  the system of -integro-differegtjal _ -  equations (8.8) 

‘lo) The method of Karman - Pohlhausen has as yet not been employed 
in the literature for solving equations of a multi-component boundary 
layer * 

- .  . . . 

a6 



(10.1) 
I 
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' Let us mention that a l l  the functions f ,  $. and $ have a mutually similar 
structure. t 

1 i 

L e t  us integrate System (10.1) for the l a s t  t i m e ,  respectively, with 

respect to the variables n,  n 1 9  n.2, ..*, nN' nH from zero to the instantan- 

eous values of these coordinates, we then find 

' where 

. . _  ̂ ... , ^  . 
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System (10.3) represents  a system of in tegro-d i f fe ren t ia l  equations. Now 

l e t  us select the  funct ions 6(S),  61(S), ...) dN(.S), dH(S), which w e r e  pre- 

viously a r b i t r a r y ,  i n  such a manner t h a t  a f t e r  subs t i t u t ion  i n t o  t h e  r igh t -  

hand s ides  of System (10.3) of t he  a r b i t r a r y  and in tegrable  funct ions u(s,  

n) ,  (Ci(s ,  ni) (i = 1, . m . ,  N), H ( s ,  n l 9  which s a t i s f y  only the  boundary 

condi t ions on t h e  w a l l  and a t  i n f i n i t y ,  we obta in  from l e f t  t o  r i g h t :  1, 

c'e-G'w (bC.. ,  y' 
spec i f ied  funct ions u, C, (i = 1, e . . s  N ) ,  H which s a t i s f y  the  boundary 

condi t ions w i l l  be found from solving the system of ordinary d i f f e r e n t i a l  

equations 

H 

and He-Hw, respect ively.  Then the  funct ions 6 f o r  t h e  

NOW the  process of successive approximations w i l l  be  constructed i n  

the  following manner, From t h e  p r a c t i c a l  da t a  on t h e  q u a l i t a t i v e  charac te r  
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’ 

I , the zero approximation: 
of the profiles of the unknown functions in the boundary layer let us select 

Then we solve the system of consistent ordinary differential equations (10.5) 
with the initial equations (11) 

go)= &lo) = ... . r= J;; (0) 44 (0) - 0 (10.6) 

(1) (-1) 
I Then from (10.3) we find ?L P,n) d!{S, N) (i=l,, ../ N), H -2 fs ‘W), and then the 
1 process is repeated until the functions U& q),Q&?,f) , . (LoS- . * ,  N/.HH(SI 2 )  in 

the physical variables are no longer near, respectively, to one another in 
the above given algorithm 

i ’  

I Equation __.. ~. __- con% 
on next page _ .  

i 

(11) Let us note that this initial condition determines the only 
I finite solution to System (10.5) when O t x  < X, where X depends on the 
data in the problem. 

I 
‘ . I  
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a, When JI' # 0, the equations in (10.7) represent a system of consistent differ- 
entia1 Abel equations of the second kind, not integrable by quadratures. 

W 

In solving the problems in boundary layer theory on an impermeable wall, 
I 

k when JI: = 0, System (10.7) may be integrated. . Here if we allow for the 
' 1 conditions in (10.6) we f ind 

/ I  

. . ^ _  



I __I .L&- p d a  . -  
or in the physical variable x ( d$=J"wp" 1 

... .. . .-. . . .. . .. 

- _  - . _ ~  __ __-. 

f 

~ If we substitute the solution to (10.9) into (10.8), we find an explicit  
< 

, ' closed scheme for the method of successive approximations when $; = 0 

I .  
6 
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. I  

3 o r - in  the physical variable x ! 
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. ,  
specified accuracy of the obtained solution, we can compute the local f rk -  
tion on the wall  using (8.8) 

: where 

1 or i n  the physical variable x 

The diffusion fluxes of the components on the wall w i l l  be,  according to 

(8.12) and (8.191, 
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, I or in  the physical variable x 

The diffusion fluxes of the elements on the wall, using their definitions 

i n  (2.23), w i l l  be 

: The concentration gradients on the wall can be found from 

j (8.21), which w i l l  be, after excluding Expressions 6i 6 ir  

' in (10.7) 

(10.19) 

expressions i n  

using the Equations 

. . . . .  . . . ... 
..i: .>.:-, ,.. 
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.' or in the physical variable x 

I 

The enthalpy gradient (temperature) on the wall, using (8.38) and (10.7), 
' w i l l  be 

_ _ "  - 



, I or in the variable x 

In solving problems in boundary layer theory on a nondisintegrating 
~ wall, the solution to the problem is finished (I2) for computing the friction ' and the heat flux toward the wall with a specified temperature T 

W. 

i 

I In solving problems in boundary layer theory over a thermochemically 
disintegrating wal1,the expression obtained for the diffusion fluxes of the 
components and elements as well as the enthalpy gradient must be substituted 
at each step of the iterations into the respective boundary conditions at 
the disintegration front after which a system of nonlinear integral Volterra 
equations is obtained for determining the concentrations and temperature on 
the wall, as well as the mass transport velocity. 

CONCLUSIONS I .  

1. We have given a strict formulation of the problems in laminar bound- /51 
' ary layer theory with chemical reactions and ionization reactions both on 
nondisintegrating and on thermochemically disintegrating surfaces, made of 
a material having a complex chemical composition. Special attention is de- 

~ voted to a rational formulation of these problems. We have discussed in de- 
tail the formulation of the problem on chemically balanced flows in boundary 
layers for mixtures of gases with different diffusion properties of the com- , 

_I_____- -- _-_ - _I - - - . - - ____ ___ _ _  - . ---- - ._ - _ _ _ _  ._.__I - -- 
, 

'12' If we do not examine the problem concerning the thennometer. 
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I 
ponents. 

when no new elementary chemical composition is  added t o  t h e  flow, i n  a 

chemically balanced boundary l aye r  f o r  a mixture with d i f f e r e n t  d i f fus ion  

p rope r t i e s  of t h e  components t h e  elementary chemical composition a t  each 

point  of t h e  boundary layer  is not  equal t o  t he  elementary composition i n  t h e  

approaching flow. Therefore, computation of t h e  t ranspor t  c o e f f i c i e n t s  

according t o  t h e  previously given tabular  da ta  on the  balanced composition of 
the  approaching flow- i n  -the general  case is  not: exact and may lead  t o  addi- 

We have shown t h a t  even i n  t h e  case of a nondis integrat ing surface,  

- \  - _  L 

' t i o n a l  e r ro r s .  

3 

2.  We have given a new method f o r  obtaining "exact" numerical so lu t ions  
! 

, t o  a r b i t r a r y  two-dimensional problems i n  boundary l aye r  theory, based on use 
of t he  method of successive approximations. 

t a in ing  a n a l y t i c a l  approximate so lu t ions  t o  the  problems i n  boundary l aye r  

W e  have given a method f o r  ob- 
i 

I - --, 
i theory, which are the  f i r s t  approximations of t h i s  method. The accuracy:, --- - 

may be evaluated any t i m e  using the  computations of t he  next approximations 

on an e l ec t ron ic  computer. 

mation even t h e  t h i r d  approximation w i l l  g ive  a high accuracy t o  the  solut ion.  

For a reasonable choice of t he  zero approxi- 

3. The proposed method may be expanded t o  solving nonstationary two- 

d imens iona l  , s t a t iona ry  three- d h e n  s i o n a l  and nons ta t ionar  y r h r  ee-d imensional 

problems i n  boundary l a y e r  theory. t 
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